

2023 Q4 MOBILE MONITORING VAN COMMERCE CITY NORTH DENVER COMMUNITY AIR MONITORING NETWORK COMMERCE CITY, COLORADO

Prepared For:

Suncor Energy (U.S.A.) Inc. 5801 Brighton Boulevard Commerce City, CO 80022

Prepared By:

Montrose Air Quality Services, LLC 990 W 43rd Avenue Denver, CO 80211

Document Number: Report Period: Submittal Date: 085AA-022555-RT-648 4th Quarter, 2023 February 2, 2024

TABLE OF CONTENTS

<u>SE</u>	CTION	PAGE
EXI	ECUTIVE SUMMARY	3
1.0	INTRODUCTION	4
2.0	MOBILE SAMPLING PROGRAM	4
	2.1 Mobile Van Air Sampling Description	4
	2.2 Mobile Monitoring Van Air Sampling Methods	6
	2.3 Screening Health Risk Assessment Methods	7
3.0	SUMMARY AND DISCUSSION OF RESULTS	10
	3.1 Summary of Mobile Monitoring Van Results	10
	3.2 Screening Health Risk Assessment Results	
	3.3 Uncertainty Evaluation	
	3.4 Program Changes	
LIS	T OF APPENDICES	
А	ISOMER CHEMICAL SAMPLING DETAILS	
В	DAILY WIND ROSES	
С	SCREENING RISK ASSESSMENT DETAILS (ALPHABETICAL ORDER I NEIGHBORHOOD NAME)	ВҮ
D	PTR CALIBRATION AND QA/QC DATA	
Е	CALIBRATION GAS CERTIFICATION SHEETS	
LIS	T OF TABLES	
2-1	MOBILE MONITORING VAN PROGRAM CHEMICALS	5
LIS	ST OF FIGURES	
2-1	MOBILE MONITORING VAN PROGRAM ROUTE THROUGH SIX NEIG AREAS	
3-1	PIONEER PARK NEIGHBORHOOD: NOVEMBER 7, 2023	12
3-2	DUPONT NEIGHBORHOOD: NOVEMBER 7, 2023	13
3-3		
3-4	ELYRIA-SWANSEA NEIGHBORHOOD: NOVEMBER 8, 2023	
3-5	WESTERN HILLS NEIGHBORHOOD: NOVEMBER 9, 2023	16
	ADAMS CITY NEIGHBORHOOD: NOVEMBER 9, 2023	

EXECUTIVE SUMMARY

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, Suncor voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group - Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time monitoring for the following analytes¹: carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitric oxide or nitrogen oxide (NO), nitrogen dioxide (NO₂), particulate matter (PM_{2.5}) and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from Summa canisters; and (3) periodic real-time air monitoring throughout neighborhoods using a mobile monitoring van to detect the presence of specific VOCs and hydrogen sulfide (H₂S). This report details approach number three, the periodic real-time air monitoring through six neighborhoods with the mobile monitoring van and a screening health risk analysis of the detected chemicals. Continuous real-time air monitoring and Summa canister sampling data are presented in separate reports.

The mobile monitoring van contains the equipment necessary to identify and quantitate individual chemicals present in ambient air at ultra-low concentrations. This equipment measures and reports concentrations of select chemicals at sub-parts per billion (ppb) levels and as quickly as one measurement per second. During the monitoring period, the mobile monitoring van followed a dense route through each of the six CCND residential neighborhoods that fall within a three-mile radius around the refinery. Accessible streets in the monitored neighborhoods were traversed at approximately 10 miles per hour (MPH) while collecting a data point for each chemical every 1 second. During the fourth quarter 2023 sampling period (November 7-November 9), the mobile monitoring van was in a total of six neighborhoods and collected more than 51,396 data points across three days of monitoring, resulting in approximately 30,234 1-hour rolling average concentrations. Meteorological conditions were also reported in real time.

Health scientists from CTEH, LLC (CTEH[®]) (a subsidiary company of Montrose) performed a screening-level human health risk assessment based on the data collected by Montrose. This evaluation was consistent with federal and state risk assessment guidelines and was conducted to determine whether the estimated 1-hour maximum measured concentrations of individual or cumulative (combined) VOCs could potentially pose acute (short-term) health hazards. The air monitoring data and health risk assessment indicate:

- Air monitoring data and health risk assessment indicate all measured individual and combined air concentrations were below their respective acute health reference levels in all neighborhoods.
- Results indicate the measured concentrations are likely to be without any appreciable risk of adverse acute health effects, even for sensitive sub-populations.

¹ An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas, an airborne particle, or other type of material.

1.0 INTRODUCTION

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group - Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time stationary monitoring for the following analytes: carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitrogen dioxide (NO₂), particulate matter (PM_{2.5}) and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from Summa canisters; and (3) periodic real-time air monitoring throughout neighborhoods using a mobile monitoring van to detect the presence of specific chemicals. An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas. an airborne particle, or other type of material. This report details approach number three. The continuous real-time community air monitoring and Summa canister sampling data are presented in separate reports. Air monitoring, sampling and analysis from approaches (1) and (2) were conducted in accordance with the Quality Assurance Project Plan (QAPP) that can be found online at ccnd-air.com/documents.

2.0 MOBILE SAMPLING PROGRAM

2.1 Mobile Van Air Sampling Description

The mobile monitoring van is a Mercedes 2500 Sprinter Van outfitted with equipment necessary to identify and quantitate individual chemicals present in ambient air to ultra-low concentrations. The mobile monitoring van is equipped with an Ionicon Model 6000-X2 proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). This instrument provides concentrations of select chemicals at sub-parts per billion (ppb) levels and as quickly as one measurement per second. The mobile monitoring van is outfitted with an external sampling system, which transports ambient air from outside of the van into the PTR-TOF-MS sample inlet for immediate real-time analysis. The entire sampling system is comprised of Teflon or Teflon-coated materials, which ensures the lowest amount of sample loss due to surface absorption of chemical molecules. The mobile monitoring van incorporates a high-precision global positioning system (GPS), a sonic anemometer to measure wind direction and wind velocity and other incorporated meteorological (MET) sensors.

During the mobile monitoring program, groups of structurally similar chemicals (called isomers) that include the list of 65 chemicals in Table 2-1 were measured to determine the instantaneous ambient concentrations. Appendix A provides more detail on the need for isomer grouping. This list of chemicals was compiled based on the typical chemicals that are monitored in urban and industrial areas and the mobile monitoring van analysis capabilities.

The mobile monitoring van followed a driving route through each of the six CCND residential neighborhoods that fall within a three-mile radius around the refinery operations. Accessible streets in the neighborhoods were traversed at approximately 10 MPH while collecting a data point approximately every 1 second. The details of the monitored neighborhoods are listed in Table 2-2 and are shown in Figure 2-1.

o-Diethylbenzene	2-Methylhexane	Neopentane	Methyl-cyclopentane	o-Ethyltoluene (2-ethyltoluene)
1,3-Butadiene	2-Methylpentane	Ethylbenzene	m-Ethyltoluene	p-Diethylbenzene (1,4-diethylbenzene)
1-Butene	3-Methylheptane	Ethylcyclohexane	m/o/p-Xylenes	p-Ethyltoluene (4-ethyltoluene)
1-Hexene	3-Methylhexane	Ethylene	n-Butane	1,2,4- trimethylbenzene
1-Pentene	3-Methylpentane	Hydrogen Cyanide	n-Decane	Propylene (Propene)
Styrene	Acetylene	Hydrogen Sulfide	n-Dodecane	2,2,4- Trimethylpentane
2,2-Dimethylbutane	Benzene	i-Butane	n-Heptane	Tetrachloroethylene
Toluene	Carbon disulfide	i-Pentane	n-Hexane	2,3,4- Trimethylpentane
2,3-Dimethylbutane	trans-2-Butene	Isopentane	n-Nonane	trans-1,2- Dimethylcyclohexane
2,3-Dimethylpentane	cis-2-Butene	Isoprene	n-Octane	trans-1,3- Dimethylcyclohexane
2,4-Dimethylpentane	cis-2-Pentene	m-Diethylbenzene	n-Pentane	cis-1,3- dimethylcyclohexane
2-Methyl-2-butene	Cumene	Methanol	n-Propylbenzene	trans-2-Pentene
2-Methylheptane	Cyclohexane	Methyl-cyclohexane	n-Undecane	Cyclopentane

TABLE 2-1 MOBILE MONITORING VAN PROGRAM CHEMICALS²

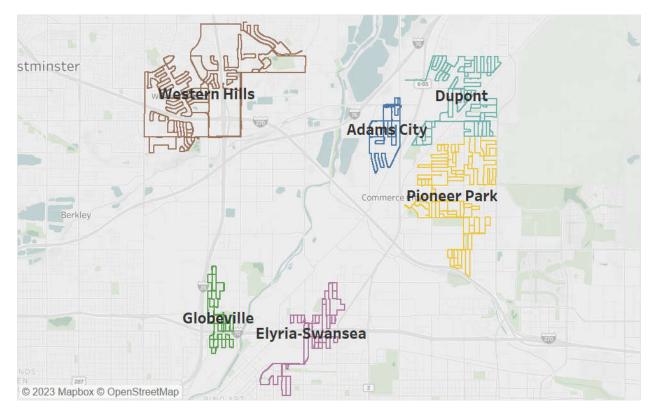
² See Appendix A for isomer analysis details

Neighborhood	Area (square miles)	Sampling Date	Start Time	End Time	Total Data Points Collected	Total Hourly Rolling Averages Calculated*
Adams City	0.41	11/9/23	12:20	14:32	7,833	4,306
Dupont	1.4	11/7/23	16:36	18:50	7,952	4,425
Elyria- Swansea	1.2	11/8/23	16:56	19:03	7,590	4,063
Globeville	0.44	11/8/23	14:24	16:29	7,450	3,923
Pioneer Park	1.7	11/7/23	10:51	14:01	11,364	7,837
Western Hills	1.6	11/9/23	9:32	12:07	9,207	5,680

TABLE 2-2NEIGHBORHOOD MONITORING PROGRAM DETAILS

*Data completeness threshold set at 98%

2.2 Mobile Monitoring Van Air Sampling Methods


The PTR-TOF-MS calibration was checked, and the instrument was zeroed each day prior to collection of any ambient air data. The instrument was calibrated using United States Environmental Protection Agency (USEPA) protocol certified calibration gases. The multichemical cylinder standards were used to generate multiple point calibration curves for each commercially available chemical present in the standard. Note: Not all chemicals listed in Table 2-1 are available as certified calibration gases. The chemical dilutions were made using an Environics Model 4040 gas dilution system. The gas dilution system was validated using the appropriate USEPA methodology (40 Code of Federal Regulation Part 51 Appendix M, Method 205). Zero-count measurements were obtained to ensure proper baseline measurements were incorporated into the calculation of each chemical's concentration. Zero-count measurements were performed through the entire sampling system using ultra-high purity air. Post-testing calibration checks were performed on the instrument to ensure there was no significant drift during the course of the sampling event. Drift can cause an increase or decrease in the measured chemical concentrations, which can lead to both positive and negative biasing of the obtained results.

The mobile monitoring van collected continuous measurements throughout each neighborhood following the routes shown in Figure 2-1. The measurements were collected from the ambient environment at a height of 15 feet above grade at approximately 8 liters per minute using a Teflon-coated sampling boom and pump. The PTR-TOF-MS sampled a slip stream of this flow at approximately 100 ml/min. The sample was introduced into the reaction tube of the PTR-TOF-MS

and results were collected in 1-second intervals. See the attached Appendix D for specific PTR-TOF-MS instrument operation conditions.

FIGURE 2-1 MOBILE MONITORING VAN PROGRAM ROUTE THROUGH SIX NEIGHBORHOOD AREAS

2.3 Screening Health Risk Assessment Methods

CTEH[®] conducted a screening-level public health risk assessment, consistent with federal risk assessment guidelines, to determine whether exposure to the detected concentrations of individual or cumulative (combined) chemicals in the air could potentially pose acute (short-term) health impacts. A tiered approach to the risk assessment was used. This approach involves one or more iterative steps (or tiers) being performed in which health risks are calculated and evaluated multiple times. In most cases, risk assessors cannot know exactly the level of chemical exposure experienced by individuals or communities. Therefore, the first tier involves use of exposure assumptions that are health-conservative. This means that data reflecting maximum exposure potential are plugged into the risk calculations. These are worst-case scenarios that typically represent exposure conditions higher than would be reasonably expected. Such calculations are very simple and assume a person is constantly exposed to the highest one hour rolling average concentration for each detected chemical. If the resulting risk values indicate the lack of likely acute adverse health effects under these worst-case conditions, then the risk assessment is complete. However, if the risk values suggest a potential for acute adverse health effects, then a second tier of risk calculations are performed, but this time using more detailed assumptions about exposure that are still simple representations of the real world but are more realistic than the first-tier worst-case assumptions. Each successive tier represents a more

complete characterization of exposure variability and/or uncertainty that requires a corresponding increase in calculation complexity and scientific level of effort.

The first tier of this risk assessment process is called a screening-level risk assessment. The conservative assumptions used for this level of risk calculation typically represent exposure conditions higher than would be reasonably expected. As such, an exceedance of an acceptable risk level (defined below) does not necessarily indicate that adverse health effects are likely. The Agency for Toxic Substances and Disease Registry (ATSDR) states, "when health assessors find exposures higher than the MRLs (ATSDR's specific health-based reference levels), it means that they may want to look more closely at a site"³. In other words, screening-level findings of an estimated exposure to a specific or cumulative set of chemical(s) being higher than its reference level (RL) does NOT indicate an actual likelihood of adverse effects but does indicate a need to move to a second tier of analysis and refine the risk assessment process with more realistic detail to determine if an actual risk exists that needs to be mitigated.

The screening-level risk assessment reported here includes calculated acute risks from exposure to individually measured chemicals as well as exposure to all measured chemicals at once (cumulative). For individual chemicals, an acute health risk value was calculated as the exposure concentration (EC) divided by the chemical-specific federal or state established acute RL (Equation 1). The result is referred to as the hazard quotient (HQ). Estimates of EC were derived from 1-hour rolling average concentrations of each chemical for the entire measurement time in an individual CCND neighborhood. The RLs used to calculate the HQs are previously established exposure levels below which no adverse effect in humans is expected. If available, RLs adopted by the Colorado Department of Public Health and Environment (CDPHE) were selected for use within this assessment and include ATSDR acute minimum risk levels (MRL), California EPA Office of Environmental Health Hazard Assessment (OEHHA) acute risk levels and Texas Commission on Environmental Quality (TCEQ) acute exposure guideline levels. If the chemical was not listed by CDPHE, a federal and state recommended hierarchy for selection of RLs was used⁴. For chemical isomer groups which were unable to be differentiated the lowest, most health-protective RL of the isomer group was selected for use in this assessment.

Acute HQs were calculated as follows:

Eq. 1 – Hazard Quotient (HQ) Equation

HQ = EC/RL

Where:

HQ = Hazard Quotient

EC = *Maximum* 1-*hour rolling average air concentration*

RL = Acute Health-based Reference Level (ATSDR, Cal EPA OEHHA and TCEQ)

Health risks from potential cumulative exposures to all detected chemicals were calculated by adding together each individual chemical's HQ calculated for a given neighborhood. The sum of all the individual HQs is called a Hazard Index (HI). Adding together all the HQs is also a very

³https://www.atsdr.cdc.gov/minimalrisklevels/#:~:text=The%20ATSDR%2C%20in%20response%20to,minimal%20risk%20levels%2 0(MRLs)

⁴ <u>https://drive.google.com/file/d/1P2KEvu0MFiyzQAOQtjQUclqR-WGh1bEX/view</u>

health-conservative approach because it assumes that all the measured chemicals exert an adverse effect on the body in a similar manner, which is rarely the case.

An HQ or HI of less than or equal to one is an indication that the estimated exposure is likely to be without an appreciable risk of adverse acute health effects, even for sensitive sub-populations. The potential for adverse health effects increases as HQ or HI increase above one, but it is not known by how much. HQ or HI values of greater than one would prompt a second-tier risk assessment beyond the screening-level assessment.

According to the USEPA and ATSDR, the federal agencies that establish these RLs, these values "are set below levels that, based on current information, might cause adverse health effects in the people most sensitive."⁵ This is because RLs are based on observed toxicity in human or animal studies with an added safety factor to account for uncertainties and variabilities in the toxicity data. For example, ATSDR identified the lowest observed adverse effect level (LOAEL) for acute exposure to benzene as 10,200 parts per billion (ppb), based on a study of mice exposed six hours per day for six days. ATSDR then applied a combined safety factor of 300 to derive the final RL to account for several uncertainties, including differences between mice and humans and for sensitive individuals. Therefore, it is scientifically incorrect to assume that all real-world exposures to a chemical at levels higher than a RL will likely result in an adverse effect.

Using the maximum 1-hour rolling average for the EC conservatively assumes that a hypothetical maximally exposed individual occupies the monitored neighborhood and breathes the maximum 1-hour detected concentration continuously for an hour up to multiple days (an acute exposure). A 1-hour average concentration is more appropriate than a 1-second or 1-minute concentration for use in an acute health risk assessment. This is because 1-second exposures to the chemicals measured in this study do not cause adverse effects unless the levels are extremely high (i.e., tens of thousands to millions of ppb). Guidance values for use in emergency situations with extremely elevated levels of these chemicals are available and are discussed below. Across all neighborhoods, 30,234 1-hour rolling averages of chemical concentrations were calculated to derive the estimated ECs (Table 2-2). The range between the average and maximum rolling 1-hour average values provides a robust estimate of plausible outdoor exposures of persons occupying the monitored neighborhood while the mobile monitoring van was present (Figures 3-1 to 3-6).

The USEPA also has established values for use in emergency situations, termed Acute Exposure Guideline Levels (AEGLs). Unlike RLs that can be thousands of times below exposure levels where adverse effects are observed, AEGL values are levels at which different acute adverse health effects may be anticipated to occur. According to USEPA, "*AEGL-1 represent exposure levels that could produce mild and progressively increasing but transient and non-disabling odor, taste and sensory irritation or certain asymptomatic, non-sensory effects. With increasing airborne concentration above each AEGL, there is a progressive increase in the likelihood of occurrence and the severity of effects described for each corresponding AEGL [i.e., AEGL-2 or AEGL-3].⁴⁶ The AEGL-1 60-minute value, if available for the applicable chemical, was also used for comparison purposes because it is more precautionary (than AEGL-2 or AEGL-3) as the AEGL-1 level reflects protecting against acute health effects that are reversible upon cessation of exposure.*

⁵

https://www.atsdr.cdc.gov/mrls/index.html#:~:text=ATSDR%20uses%20the%20no%20observed,to%20such%20substance%2Dindu ced%20effects.

⁶ https://www.epa.gov/aegl/about-acute-exposure-guideline-levels-aegls

3.0 SUMMARY AND DISCUSSION OF RESULTS

3.1 Summary of Mobile Monitoring Van Results

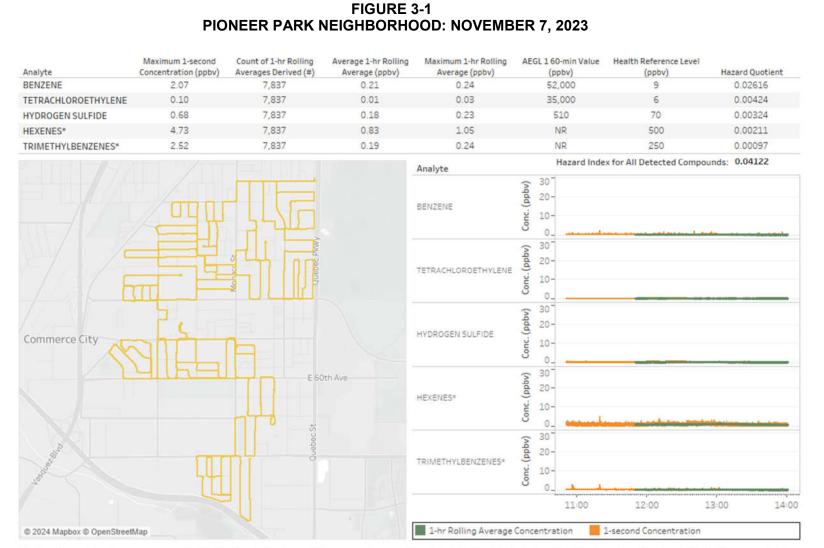
A summary of mobile monitoring van results by neighborhood can be found in Table 2-2. Over three days, six neighborhoods were monitored for 65 chemicals, collecting more than 51,396 total data points. Individual neighborhood results are detailed in Figures 3-1 through 3-6. Each figure shows a map of the monitoring locations within each neighborhood, the chemicals that resulted in the five highest calculated acute HQs and time profiles of the measured levels of these chemicals. The time profiles show all the 1-second data (orange) and calculated 1-hour rolling averages (green) of the monitoring data. Each green 1-hour average data point shown in these profiles reflects all the 1-second measurements collected over the previous hour. Thus, 1-hour rolling average values are shown on the time profiles only after one hour of data collection (Figure 3-1 through 3-6).

Wind roses for each sampling day are provided in Appendix B. The data used to derive the wind roses were collected from the CCND community sensor location most local to the neighborhood being monitored on each day because the stationary source of MET data is more reliable than the MET station on the mobile monitoring van when the lab is moving.

3.2 Screening Health Risk Assessment Results

Acute health risks were calculated for each neighborhood. According to USEPA guidelines, an acute HQ or HI less than or equal to one (1) indicates that exposures are likely to be without any acute adverse health effects, even for sensitive sub-populations.

Maximum 1-hour rolling average concentrations for 65 chemicals measured in each neighborhood were compared to acute RLs to derive HQs. Figures 3-1 through 3-6 show concentrations of chemicals over the sampling time and summaries of results for chemicals resulting in the five highest HQs by neighborhood (if available). The estimated HI values (if available) shown in Figures 3-1 through 3-6 were calculated by summing the HQs of all detected chemicals measured in a given neighborhood. If any measured chemical resulted in a HQ greater than 1, then a separate figure would be shown for that chemical alone. Complete results for HQs for all chemicals detected in each neighborhood are available in Appendix C.


In conclusion, the data collected during this study phase did not indicate a potential for acute adverse health effects from exposure to the measured chemicals, both individually and combined.

- All HQs were less than one for all detected chemicals, indicating that the maximum 1-hour rolling average concentration for each chemical was below its respective acute RL in all six neighborhoods (Figure 3-1 through 3-6).
- In this quarter, benzene, tetrachloroethylene, hydrogen sulfide, hexene group, hydrogen cyanide, xylenes, and trimethylbenzene group were the chemicals or isomer groupings resulting in the highest HQ in each neighborhood, accounting for over 80% of the total calculated HI values. However, all HI values calculated in all six neighborhoods were below one (Figures 3-1 through 3-6).


• These results indicate that the measured concentrations of chemicals, both individually and cumulative (combined), are likely to be without an appreciable risk of acute adverse health effects, even for sensitive sub-populations.

FIGURE 3-2 DUPONT NEIGHBORHOOD: NOVEMBER 7, 2023

Maximum 1-second Count of 1-hr Rolling Average 1-hr Rolling Maximum 1-hr Rolling AEGL 1 60-min Value Health Reference Level Analyte Concentration (ppbv) Averages Derived (#) Average (ppbv) Average (ppbv) (ppbv) (ppbv) Hazard Quotient 9 BENZENE 3.75 3,923 0.22 0.24 52,000 0.02661 7.47 3,923 1.52 2.00 NR 500 0.00399 **HEXENES*** 0.58 3,923 0.19 0.20 510 70 0.00279 HYDROGEN SULFIDE TETRACHLOROETHYLENE 0.05 3.923 0.01 0.01 35,000 6 0.00164 4.33 0.34 NR 250 TRIMETHYLBENZENES* 3,923 0.37 0.00148 Hazard Index for All Detected Compounds: 0.03957 Analyte 30 Conc. (ppbv) 20-BENZENE 10-0. E 52nd Ave 30 Conc. (ppbv) 20-HEXENES* 10-Not not stern Dr N 0 30 (vddd) earl St 20-HYDROGEN SULFIDE Conc. 10-0. W 48th Ave (vddd) 30 20-TETRACHLOROETHYLENE 100 Conc. 10-10 0. 30 (vddd) 20. TRIMETHYLBENZENES* Conc. 10-0 14:47 15:17 15:47 16:17 1-hr Rolling Average Concentration © 2024 Mapbox © OpenStreetMap 1-second Concentration

FIGURE 3-3 GLOBEVILLE NEIGHBORHOOD: NOVEMBER 8, 2023

FIGURE 3-4 ELYRIA-SWANSEA NEIGHBORHOOD: NOVEMBER 8, 2023

FIGURE 3-5 WESTERN HILLS NEIGHBORHOOD: NOVEMBER 9, 2023

Analyte	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value (ppbv)	Health Reference Level (ppbv)	Hazard Quotient
BENZENE	2.87	5,680	0.16	0.19	52,000	9	0.02123
HYDROGEN SULFIDE	0.42	5,680	0.12	0.14	510	70	0.00198
HEXENES*	4.60	5,680	0.70	0.84	NR	500	0.00168
TETRACHLOROETHYLENE	0.03	5,680	0.00	0.00	35,000	6	0.00074
TRIMETHYLBENZENES*	2.05	5,680	0.16	0.18	NR	250	0.00073

FIGURE 3-6 ADAMS CITY NEIGHBORHOOD: NOVEMBER 9, 2023

3.3 Uncertainty Evaluation

Scientific uncertainty is inherent in each step of the risk assessment process because all risk assessments incorporate a variety of assumptions and professional judgments. Therefore, the acute hazard estimates presented in this assessment are estimates of risk due to a number of assumptions about exposure and toxicity. This screening-level risk assessment relied on a combination of health-protective exposure scenarios and input values (i.e., high-end exposures and conservative selection of lowest reference value per isomer). Because of these assumptions, the estimates of acute hazards are themselves uncertain but likely to be over-estimates of actual risk.

This risk assessment did not address past or present health outcomes associated with current or past exposures. As such, this risk assessment cannot be used to make realistic predictions of biological effects and/or used to determine whether someone is ill (cancer or other adverse health effects) due to past or current exposures. This risk assessment was limited to inhalation exposures from outdoor exposures to all potential sources.

3.4 **Program Changes**

No program changes occurred during this reporting period.

Respectfully Submitted:

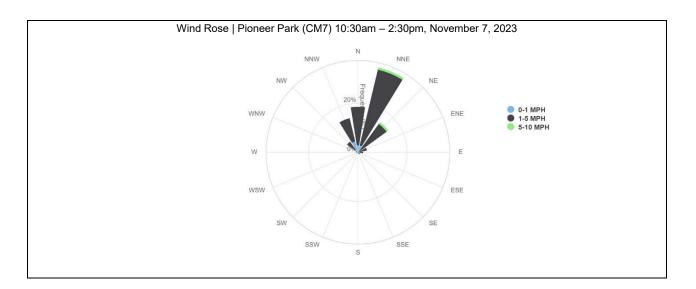
Here spicks

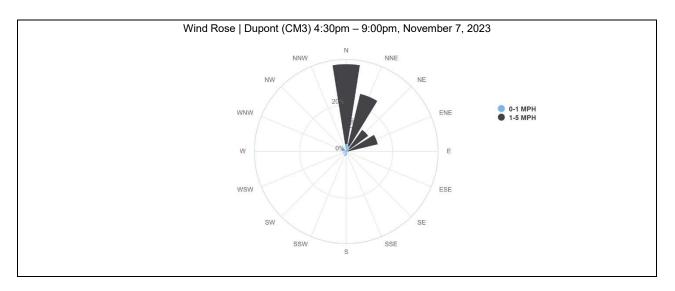
Steven Yuchs, PhD. Vice President, Technical Ambient & Emerging Technology Montrose Air Quality Services

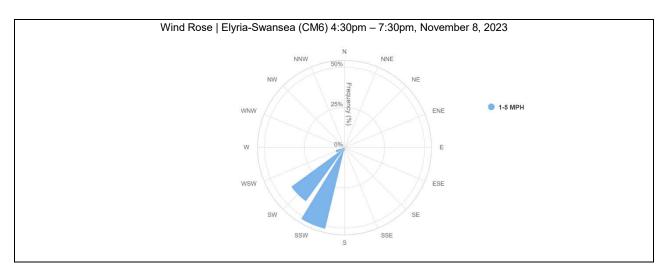
Michael H. Lumphin

Michael Lumpkin, PhD, DABT Senior Toxicologist CTEH®, LLC

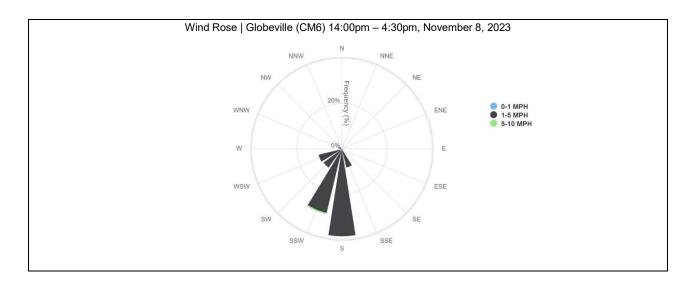
APPENDIX A ISOMER CHEMICAL SAMPLING DETAILS

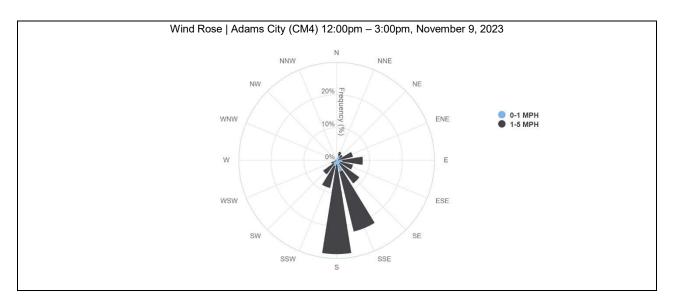

In a real-time PTR-TOF analysis, it is not possible to speciate isomers, or chemical compounds that have the same molecular weight. For example, n-hexane, 2-methyl pentane and 2,2-dimethyl butane all have a molecular mass of 86.178 g/mol. In order to provide the most conservative determination of concentration during this mapping program, each isomer's concentration is reported as the sum of all isomers with the same molecular weight. For the sake of simplicity, the calculations in the report refer to generic names for a group of specific isomers. The following table defines a simplified list of the many isomers that may comprise the generic groups reported.

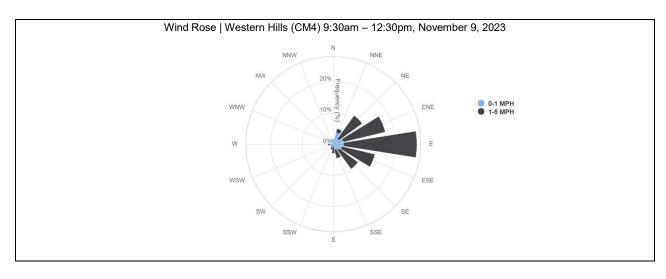

Group Name	Specific Isomers	Group Name	Specific Isomers
Butenes	1-Butene	Xylenes	Ethyl Benzene
	cis-2-Butene		o-Xylene
	trans-2-Butene		m-Xylene
			p-Xylene
Butanes	iso-Butane		
	n-Butane	Dimethylcyclohexanes	Ethylcyclohexane
			cis-1,3-Dimethylcyclohexane
			trans-1,2-
Cyclopentanes	Cyclopentane		Dimethylcyclohexane
	1-Pentene		trans-1,3-
	2-Methyl-2-butene		Dimethylcyclohexane
	cis-2-Pentene		
	trans-2-Pentene	Octanes	n-Octane
			2-Methylheptane
Pentanes	iso-Pentane		3-Methylheptane
	n-Pentane		2,2,4-Trimethylpentane
	neo-Pentane		2,3,4-Trimethylpentane
Hexenes	1-Hexene	Trimethylbenzenes	Cumene
	Cyclohexane		1,2,4-Trimethylbenzene
	Methylcyclopentane		o-Ethyltoluene
			m-Ethyltoluene
Hexanes	n-Hexane		p-Ethyltoluene
	2-Methylpentane		n-Propylbenzene
	3-Methylpentane		1,3,5-Trimethylbenzene
	2,2-Dimethylbutane		•
	2,3-Dimethylbutane	Diethylbenzenes	o-Diethylbenzene
	, ,	,	m-Diethylbenzene
Heptanes	n-Heptane		p-Diethylbenzene
•	2-Methylhexane		All other C ₁₀ H ₁₄ Isomers
	, 3-Methylhexane		
	2,3-		
	Dimethylpentane		
	2,4-		
	Dimethylpentane		



APPENDIX B DAILY WIND ROSES







APPENDIX C SCREENING RISK ASSESSMENT DETAILS (ALPHABETICAL ORDER BY NEIGHBORHOOD NAME)

Mobile Laboratory Sampling Data Summary and Risk Assessment Adams City Neighborhood | November 9, 2023

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	7,833	0.09	4,306	0.01	0.01	670,000	298	OEHHA Acute REL	0.00003
ACETYLENE	74-86-2	7,833	1.32	4,306	0.21	0.23	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	7,833	4.72	4,306	0.27	0.31	52,000	9	ATSDR Acute MRL	0.03428
BUTANES*	75-28-5	7,833	122.70	4,306	2.18	2.42	NR	33000	TCEQ Short-Term AMCV Health	0.00007
BUTENES*	590-18-1	7,833	19.62	4,306	1.60	1.84	NR	15000	TCEQ Short-Term AMCV Health	0.00012
CARBON DISULFIDE	75-15-0	7,833	0.02	4,306	0.00	0.00	13,000	1,991	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	7,833	24.09	4,306	1.82	2.08	NR	5,900	TCEQ Short-Term AMCV Health	0.00035
DECANES	124-18-5	7,833	0.06	4,306	0.02	0.02	NR	1,000	TCEQ Short-Term AMCV Health	0.00002
DIETHYLBENZENES*	141-93-5	7,833	0.10	4,306	0.02	0.02	NR	450	TCEQ Short-Term AMCV Health	0.00005
DIMETHYLCYCLOHEXANES*	638-04-0	7,833	0.07	4,306	0.02	0.02	NR	4,000	CDPHE	0.00001
DODECANES	112-40-3	7,833	0.01	4,306	0.00	0.00	NR	1720	CDPHE	0.00000
ETHYLENE	74-85-1	7,833	25.54	4,306	6.48	6.52	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	7,833	0.10	4,306	0.04	0.05	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	7,833	0.44	4,306	0.30	0.31	NR	5,400	TCEQ Short-Term AMCV Health	0.00006
HEXENES*	592-41-6	7,833	3.85	4,306	0.83	0.90	NR	500	TCEQ Short-Term AMCV Health	0.00180
HYDROGEN CYANIDE	74-90-8	7,833	1.55	4,306	0.17	0.18	2,000	308	OEHHA Acute REL	0.00060
HYDROGEN SULFIDE	7783-06-4	7,833	0.47	4,306	0.16	0.17	510	70	ATSDR Acute MRL	0.00240
ISOPRENE	78-79-5	7,833	0.81	4,306	0.15	0.16	NR	1,400	TCEQ Short-Term AMCV Health	0.00011
METHANOL	67-56-1	7,833	57.78	4,306	4.97	5.08	530,000	21,366	OEHHA Acute REL	0.00024
METHYLCYCLOHEXANE	108-87-2	7,833	0.12	4,306	0.04	0.04	NR	4,000	TCEQ Short-Term AMCV Health	0.00001
NONANES	111-84-2	7,833	0.03	4,306	0.00	0.00	NR	3,000	TCEQ Short-Term AMCV Health	0.00000
OCTANES*	111-65-9	7,833	0.49	4,306	0.03	0.04	NR	4,100	TCEQ Short-Term AMCV Health	0.00001
PENTANES*	109-66-0	7,833	0.34	4,306	0.27	0.27	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	7,833	7.14	4,306	0.67	0.75	NR	NA	NE	
STYRENE	100-42-5	7,833	0.17	4,306	0.04	0.05	20,000	5,000	ATSDR Acute MRL	0.00001
TETRACHLOROETHYLENE	127-18-4	7,833	0.02	4,306	0.00	0.00	35,000	6	ATSDR Acute MRL	0.00001
TOLUENE	108-88-3	7,833	10.52	4,306	0.64	0.74	67,000	2,000	ATSDR Acute MRL	0.00037
TRIMETHYLBENZENES*	622-96-8	7,833	2.91	4,306	0.29	0.34	50,000	250	TCEQ Short-Term AMCV Health	0.00137
UNDECANES	1120-21-4	7,833	0.02	4,306	0.00	0.00	NR	550	TCEQ Short-Term AMCV Health	0.00000
XYLENES*	1330-20-7	7,833	12.27	4,306	0.83	0.98	130,000	2,000	ATSDR Acute MRL	0.00049
									Hazard Index	0.04246

NR= According to EPA, AEGL is "not recommended due to insufficient data"

NA= Not Available

NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment **DuPont Neighborhood** | November 7, 2023

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	7,952	0.12	4,425	0.01	0.01	670,000	298	OEHHA Acute REL	0.00005
ACETYLENE	74-86-2	7,952	1.44	4,425	0.22	0.23	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	7,952	3.16	4,425	0.20	0.24	52,000	9	ATSDR Acute MRL	0.02681
BUTANES*	75-28-5	7,952	18.34	4,425	2.21	2.54	NR	33000	TCEQ Short-Term AMCV Health	0.00008
BUTENES*	590-18-1	7,952	28.43	4,425	1.17	1.58	NR	15000	TCEQ Short-Term AMCV Health	0.00011
CARBON DISULFIDE	75-15-0	7,952	0.05	4,425	0.00	0.00	13,000	1,991	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	7,952	37.82	4,425	2.61	3.07	NR	5,900	TCEQ Short-Term AMCV Health	0.00052
DECANES	124-18-5	7,952	0.07	4,425	0.02	0.03	NR	1,000	TCEQ Short-Term AMCV Health	0.00003
DIETHYLBENZENES*	141-93-5	7,952	0.08	4,425	0.03	0.03	NR	450	TCEQ Short-Term AMCV Health	0.00006
DIMETHYLCYCLOHEXANES*	638-04-0	7,952	0.14	4,425	0.04	0.04	NR	4,000	CDPHE	0.00001
DODECANES	112-40-3	7,952	0.02	4,425	0.00	0.00	NR	1720	CDPHE	0.00000
ETHYLENE	74-85-1	7,952	168.33	4,425	5.61	6.34	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	7,952	0.27	4,425	0.10	0.12	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	7,952	0.30	4,425	0.06	0.07	NR	5,400	TCEQ Short-Term AMCV Health	0.00001
HEXENES*	592-41-6	7,952	15.40	4,425	0.94	1.02	NR	500	TCEQ Short-Term AMCV Health	0.00204
HYDROGEN CYANIDE	74-90-8	7,952	0.61	4,425	0.10	0.15	2,000	308	OEHHA Acute REL	0.00048
HYDROGEN SULFIDE	7783-06-4	7,952	0.86	4,425	0.14	0.14	510	70	ATSDR Acute MRL	0.00204
ISOPRENE	78-79-5	7,952	0.93	4,425	0.14	0.15	NR	1,400	TCEQ Short-Term AMCV Health	0.00011
METHANOL	67-56-1	7,952	54.99	4,425	1.13	1.57	530,000	21,366	OEHHA Acute REL	0.00007
METHYLCYCLOHEXANE	108-87-2	7,952	0.28	4,425	0.07	0.07	NR	4,000	TCEQ Short-Term AMCV Health	0.00002
NONANES	111-84-2	7,952	0.07	4,425	0.02	0.02	NR	3,000	TCEQ Short-Term AMCV Health	0.00001
OCTANES*	111-65-9	7,952	0.20	4,425	0.05	0.06	NR	4,100	TCEQ Short-Term AMCV Health	0.00001
PENTANES*	109-66-0	7,952	0.48	4,425	0.02	0.03	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	7,952	12.74	4,425	0.33	0.49	NR	NA	NE	
STYRENE	100-42-5	7,952	0.94	4,425	0.07	0.09	20,000	5,000	ATSDR Acute MRL	0.00002
TETRACHLOROETHYLENE	127-18-4	7,952	0.04	4,425	0.01	0.01	35,000	6	ATSDR Acute MRL	0.00108
TOLUENE	108-88-3	7,952	33.49	4,425	0.64	0.92	67,000	2,000	ATSDR Acute MRL	0.00046
TRIMETHYLBENZENES*	622-96-8	7,952	1.94	4,425	0.16	0.22	50,000	250	TCEQ Short-Term AMCV Health	0.00086
UNDECANES	1120-21-4	7,952	0.06	4,425	0.02	0.02	NR	550	TCEQ Short-Term AMCV Health	0.00004
XYLENES*	1330-20-7	7,952	20.56	4,425	0.74	1.02	130,000	2,000	ATSDR Acute MRL	0.00051
									Hazard Index	0.03546

NR= According to EPA, AEGL is "not recommended due to insufficient data"

NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment Elyria-Swansea Neighborhood | November 8, 2023

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	7,590	0.14	4,063	0.01	0.01	670,000	298	OEHHA Acute REL	0.00004
ACETYLENE	74-86-2	7,590	0.90	4,063	0.26	0.27	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	7,590	12.64	4,063	0.25	0.28	52,000	9	ATSDR Acute MRL	0.03056
BUTANES*	75-28-5	7,590	17.86	4,063	2.35	2.48	NR	33000	TCEQ Short-Term AMCV Health	0.00008
BUTENES*	590-18-1	7,590	41.37	4,063	1.72	1.79	NR	15000	TCEQ Short-Term AMCV Health	0.00012
CARBON DISULFIDE	75-15-0	7,590	0.03	4,063	0.00	0.00	13,000	1,991	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	7,590	30.29	4,063	1.13	1.23	NR	5,900	TCEQ Short-Term AMCV Health	0.00021
DECANES	124-18-5	7,590	0.06	4,063	0.03	0.03	NR	1,000	TCEQ Short-Term AMCV Health	0.00003
DIETHYLBENZENES*	141-93-5	7,590	0.10	4,063	0.03	0.03	NR	450	TCEQ Short-Term AMCV Health	0.00006
DIMETHYLCYCLOHEXANES*	638-04-0	7,590	0.41	4,063	0.02	0.03	NR	4,000	CDPHE	0.00001
DODECANES	112-40-3	7,590	0.01	4,063	0.00	0.00	NR	1720	CDPHE	0.00000
ETHYLENE	74-85-1	7,590	7.92	4,063	7.17	7.18	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	7,590	0.12	4,063	0.06	0.07	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	7,590	0.40	4,063	0.31	0.31	NR	5,400	TCEQ Short-Term AMCV Health	0.00006
HEXENES*	592-41-6	7,590	12.08	4,063	0.98	1.01	NR	500	TCEQ Short-Term AMCV Health	0.00203
HYDROGEN CYANIDE	74-90-8	7,590	0.58	4,063	0.17	0.18	2,000	308	OEHHA Acute REL	0.00057
HYDROGEN SULFIDE	7783-06-4	7,590	0.51	4,063	0.19	0.19	510	70	ATSDR Acute MRL	0.00275
ISOPRENE	78-79-5	7,590	2.32	4,063	0.17	0.19	NR	1,400	TCEQ Short-Term AMCV Health	0.00013
METHANOL	67-56-1	7,590	23.80	4,063	5.55	5.64	530,000	21,366	OEHHA Acute REL	0.00026
METHYLCYCLOHEXANE	108-87-2	7,590	0.28	4,063	0.06	0.06	NR	4,000	TCEQ Short-Term AMCV Health	0.00001
NONANES	111-84-2	7,590	0.04	4,063	0.01	0.01	NR	3,000	TCEQ Short-Term AMCV Health	0.00000
OCTANES*	111-65-9	7,590	0.08	4,063	0.03	0.04	NR	4,100	TCEQ Short-Term AMCV Health	0.00001
PENTANES*	109-66-0	7,590	0.40	4,063	0.27	0.27	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	7,590	23.84	4,063	0.89	0.94	NR	NA	NE	
STYRENE	100-42-5	7,590	0.23	4,063	0.05	0.05	20,000	5,000	ATSDR Acute MRL	0.00001
TETRACHLOROETHYLENE	127-18-4	7,590	0.03	4,063	0.00	0.00	35,000	6	ATSDR Acute MRL	0.00048
TOLUENE	108-88-3	7,590	29.99	4,063	0.93	1.18	67,000	2,000	ATSDR Acute MRL	0.00059
TRIMETHYLBENZENES*	622-96-8	7,590	4.02	4,063	0.34	0.39	50,000	250	TCEQ Short-Term AMCV Health	0.00157
UNDECANES	1120-21-4	7,590	0.03	4,063	0.00	0.00	NR	550	TCEQ Short-Term AMCV Health	0.00000
XYLENES*	1330-20-7	7,590	30.06	4,063	1.21	1.43	130,000	2,000	ATSDR Acute MRL	0.00071
									Hazard Index	0.04034

NR= According to EPA, AEGL is "not recommended due to insufficient data"

NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment Globeville Neighborhood | November 8, 2023

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	7,450	0.13	3,923	0.01	0.02	670,000	298	OEHHA Acute REL	0.00005
ACETYLENE	74-86-2	7,450	0.98	3,923	0.38	0.39	NR	25,000	TCEQ Short-Term AMCV Health	0.00002
BENZENE	71-43-2	7,450	3.75	3,923	0.22	0.24	52,000	9	ATSDR Acute MRL	0.02661
BUTANES*	75-28-5	7,450	44.33	3,923	2.71	3.10	NR	33000	TCEQ Short-Term AMCV Health	0.00009
BUTENES*	590-18-1	7,450	18.71	3,923	2.03	2.28	NR	15000	TCEQ Short-Term AMCV Health	0.00015
CARBON DISULFIDE	75-15-0	7,450	0.03	3,923	0.00	0.00	13,000	1,991	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	7,450	28.81	3,923	2.04	2.91	NR	5,900	TCEQ Short-Term AMCV Health	0.00049
DECANES	124-18-5	7,450	0.18	3,923	0.05	0.07	NR	1,000	TCEQ Short-Term AMCV Health	0.00007
DIETHYLBENZENES*	141-93-5	7,450	0.08	3,923	0.03	0.03	NR	450	TCEQ Short-Term AMCV Health	0.00007
DIMETHYLCYCLOHEXANES*	638-04-0	7,450	0.23	3,923	0.04	0.05	NR	4,000	CDPHE	0.00001
DODECANES	112-40-3	7,450	0.01	3,923	0.00	0.00	NR	1720	CDPHE	0.00000
ETHYLENE	74-85-1	7,450	7.74	3,923	7.13	7.13	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	7,450	0.38	3,923	0.12	0.15	NR	8,300	TCEQ Short-Term AMCV Health	0.00002
HEXANES*	110-54-3	7,450	0.69	3,923	0.34	0.36	NR	5,400	TCEQ Short-Term AMCV Health	0.00007
HEXENES*	592-41-6	7,450	7.47	3,923	1.52	2.00	NR	500	TCEQ Short-Term AMCV Health	0.00399
HYDROGEN CYANIDE	74-90-8	7,450	0.69	3,923	0.07	0.10	2,000	308	OEHHA Acute REL	0.00032
HYDROGEN SULFIDE	7783-06-4	7,450	0.58	3,923	0.19	0.20	510	70	ATSDR Acute MRL	0.00279
ISOPRENE	78-79-5	7,450	1.45	3,923	0.22	0.25	NR	1,400	TCEQ Short-Term AMCV Health	0.00018
METHANOL	67-56-1	7,450	14.79	3,923	5.07	5.21	530,000	21,366	OEHHA Acute REL	0.00024
METHYLCYCLOHEXANE	108-87-2	7,450	0.26	3,923	0.09	0.12	NR	4,000	TCEQ Short-Term AMCV Health	0.00003
NONANES	111-84-2	7,450	0.14	3,923	0.02	0.04	NR	3,000	TCEQ Short-Term AMCV Health	0.00001
OCTANES*	111-65-9	7,450	0.27	3,923	0.07	0.11	NR	4,100	TCEQ Short-Term AMCV Health	0.00003
PENTANES*	109-66-0	7,450	0.39	3,923	0.28	0.28	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	7,450	5.38	3,923	0.84	0.87	NR	NA	NE	
STYRENE	100-42-5	7,450	0.22	3,923	0.06	0.07	20,000	5,000	ATSDR Acute MRL	0.00001
TETRACHLOROETHYLENE	127-18-4	7,450	0.05	3,923	0.01	0.01	35,000	6	ATSDR Acute MRL	0.00164
TOLUENE	108-88-3	7,450	22.69	3,923	0.87	0.96	67,000	2,000	ATSDR Acute MRL	0.00048
TRIMETHYLBENZENES*	622-96-8	7,450	4.33	3,923	0.34	0.37	50,000	250	TCEQ Short-Term AMCV Health	0.00148
UNDECANES	1120-21-4	7,450	0.08	3,923	0.01	0.03	NR	550	TCEQ Short-Term AMCV Health	0.00005
XYLENES*	1330-20-7	7,450	25.71	3,923	1.13	1.26	130,000	2,000	ATSDR Acute MRL	0.00063
									Hazard Index	0.03957

NR= According to EPA, AEGL is "not recommended due to insufficient data"

NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment Pioneer Park Neighborhood | November 7, 2023

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	11,364	0.29	7,837	0.03	0.06	670,000	298	OEHHA Acute REL	0.00020
ACETYLENE	74-86-2	11,364	1.65	7,837	0.32	0.40	NR	25,000	TCEQ Short-Term AMCV Health	0.00002
BENZENE	71-43-2	11,364	2.07	7,837	0.21	0.24	52,000	9	ATSDR Acute MRL	0.02616
BUTANES*	75-28-5	11,364	18.65	7,837	3.95	5.19	NR	33000	TCEQ Short-Term AMCV Health	0.00016
BUTENES*	590-18-1	11,364	14.21	7,837	1.61	2.33	NR	15000	TCEQ Short-Term AMCV Health	0.00016
CARBON DISULFIDE	75-15-0	11,364	0.11	7,837	0.01	0.02	13,000	1,991	OEHHA Acute REL	0.00001
CYCLOPENTANES*	287-92-3	11,364	19.52	7,837	2.80	3.61	NR	5,900	TCEQ Short-Term AMCV Health	0.00061
DECANES	124-18-5	11,364	0.40	7,837	0.08	0.16	NR	1,000	TCEQ Short-Term AMCV Health	0.00016
DIETHYLBENZENES*	141-93-5	11,364	0.13	7,837	0.04	0.05	NR	450	TCEQ Short-Term AMCV Health	0.00011
DIMETHYLCYCLOHEXANES*	638-04-0	11,364	0.07	7,837	0.01	0.02	NR	4,000	CDPHE	0.00001
DODECANES	112-40-3	11,364	0.02	7,837	0.00	0.00	NR	1720	CDPHE	0.00000
ETHYLENE	74-85-1	11,364	34.53	7,837	6.14	6.28	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	11,364	0.24	7,837	0.09	0.11	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	11,364	0.21	7,837	0.08	0.09	NR	5,400	TCEQ Short-Term AMCV Health	0.00002
HEXENES*	592-41-6	11,364	4.73	7,837	0.83	1.05	NR	500	TCEQ Short-Term AMCV Health	0.00211
HYDROGEN CYANIDE	74-90-8	11,364	0.91	7,837	0.15	0.25	2,000	308	OEHHA Acute REL	0.00081
HYDROGEN SULFIDE	7783-06-4	11,364	0.68	7,837	0.18	0.23	510	70	ATSDR Acute MRL	0.00324
ISOPRENE	78-79-5	11,364	1.54	7,837	0.27	0.58	NR	1,400	TCEQ Short-Term AMCV Health	0.00041
METHANOL	67-56-1	11,364	9.14	7,837	2.05	2.32	530,000	21,366	OEHHA Acute REL	0.00011
METHYLCYCLOHEXANE	108-87-2	11,364	0.16	7,837	0.04	0.06	NR	4,000	TCEQ Short-Term AMCV Health	0.00001
NONANES	111-84-2	11,364	0.15	7,837	0.03	0.05	NR	3,000	TCEQ Short-Term AMCV Health	0.00002
OCTANES*	111-65-9	11,364	0.17	7,837	0.05	0.07	NR	4,100	TCEQ Short-Term AMCV Health	0.00002
PENTANES*	109-66-0	11,364	0.68	7,837	0.27	0.28	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	11,364	4.32	7,837	0.37	0.51	NR	NA	NE	
STYRENE	100-42-5	11,364	0.48	7,837	0.03	0.05	20,000	5,000	ATSDR Acute MRL	0.00001
TETRACHLOROETHYLENE	127-18-4	11,364	0.10	7,837	0.01	0.03	35,000	6	ATSDR Acute MRL	0.00424
TOLUENE	108-88-3	11,364	13.60	7,837	1.12	1.72	67,000	2,000	ATSDR Acute MRL	0.00086
TRIMETHYLBENZENES*	622-96-8	11,364	2.52	7,837	0.19	0.24	50,000	250	TCEQ Short-Term AMCV Health	0.00097
UNDECANES	1120-21-4	11,364	0.17	7,837	0.05	0.07	NR	550	TCEQ Short-Term AMCV Health	0.00013
XYLENES*	1330-20-7	11,364	11.40	7,837	1.04	1.31	130,000	2,000	ATSDR Acute MRL	0.00065
									Hazard Index	0.04122

NR= According to EPA, AEGL is "not recommended due to insufficient data"

NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment Western Hills Neighborhood | November 9, 2023

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	9,207	0.11	5,680	0.01	0.01	670,000	298	OEHHA Acute REL	0.00003
ACETYLENE	74-86-2	9,207	0.87	5,680	0.21	0.24	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	9,207	2.87	5,680	0.16	0.19	52,000	9	ATSDR Acute MRL	0.02123
BUTANES*	75-28-5	9,207	9.82	5,680	1.85	2.08	NR	33000	TCEQ Short-Term AMCV Health	0.00006
BUTENES*	590-18-1	9,207	23.96	5,680	1.63	1.94	NR	15000	TCEQ Short-Term AMCV Health	0.00013
CARBON DISULFIDE	75-15-0	9,207	0.03	5,680	0.00	0.00	13,000	1,991	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	9,207	33.71	5,680	1.69	2.15	NR	5,900	TCEQ Short-Term AMCV Health	0.00036
DECANES	124-18-5	9,207	0.07	5,680	0.01	0.01	NR	1,000	TCEQ Short-Term AMCV Health	0.00001
DIETHYLBENZENES*	141-93-5	9,207	0.15	5,680	0.02	0.02	NR	450	TCEQ Short-Term AMCV Health	0.00005
DIMETHYLCYCLOHEXANES*	638-04-0	9,207	0.17	5,680	0.03	0.03	NR	4,000	CDPHE	0.00001
DODECANES	112-40-3	9,207	0.01	5,680	0.00	0.00	NR	1720	CDPHE	0.00000
ETHYLENE	74-85-1	9,207	14.66	5,680	7.12	7.39	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	9,207	0.17	5,680	0.05	0.07	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	9,207	0.41	5,680	0.17	0.17	NR	5,400	TCEQ Short-Term AMCV Health	0.00003
HEXENES*	592-41-6	9,207	4.60	5,680	0.70	0.84	NR	500	TCEQ Short-Term AMCV Health	0.00168
HYDROGEN CYANIDE	74-90-8	9,207	0.87	5,680	0.13	0.14	2,000	308	OEHHA Acute REL	0.00046
HYDROGEN SULFIDE	7783-06-4	9,207	0.42	5,680	0.12	0.14	510	70	ATSDR Acute MRL	0.00198
ISOPRENE	78-79-5	9,207	0.94	5,680	0.13	0.15	NR	1,400	TCEQ Short-Term AMCV Health	0.00011
METHANOL	67-56-1	9,207	38.61	5,680	5.39	5.57	530,000	21,366	OEHHA Acute REL	0.00026
METHYLCYCLOHEXANE	108-87-2	9,207	0.13	5,680	0.04	0.04	NR	4,000	TCEQ Short-Term AMCV Health	0.00001
NONANES	111-84-2	9,207	0.04	5,680	0.01	0.01	NR	3,000	TCEQ Short-Term AMCV Health	0.00000
OCTANES*	111-65-9	9,207	0.15	5,680	0.02	0.02	NR	4,100	TCEQ Short-Term AMCV Health	0.00001
PENTANES*	109-66-0	9,207	0.43	5,680	0.27	0.28	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	9,207	5.05	5,680	0.26	0.33	NR	NA	NE	
STYRENE	100-42-5	9,207	0.14	5,680	0.00	0.01	20,000	5,000	ATSDR Acute MRL	0.00000
TETRACHLOROETHYLENE	127-18-4	9,207	0.03	5,680	0.00	0.00	35,000	6	ATSDR Acute MRL	0.00074
TOLUENE	108-88-3	9,207	8.60	5,680	0.41	0.45	67,000	2,000	ATSDR Acute MRL	0.00023
TRIMETHYLBENZENES*	622-96-8	9,207	2.05	5,680	0.16	0.18	50,000	250	TCEQ Short-Term AMCV Health	0.00073
UNDECANES	1120-21-4	9,207	0.04	5,680	0.01	0.01	NR	550	TCEQ Short-Term AMCV Health	0.00002
XYLENES*	1330-20-7	9,207	9.95	5,680	0.51	0.56	130,000	2,000	ATSDR Acute MRL	0.00028
									Hazard Index	0.02846

NR= According to EPA, AEGL is "not recommended due to insufficient data"

NA= Not Available NC= Not Calculated

APPENDIX D PTR CALIBRATION AND QA/QC DATA

Notable Sampling Events During Test Program

11-7-23 Pioneer Park Neighborhood

11:20 E64th and Niagra: Benzene, toluene and xylene spike, Trash truck exhaust

11-7-23 Dupont Neighborhood

17:27 E80th and Monaco Intersection: Benzene, toluene, hexenes car exhaust

11-8-23 Globeville and Elyria-Swansea Neighborhoods

15:50 Leaf and 47th Intersection: Benzene, toluene, xylenes, hexene, auto exhaust.
16:37 Lincoln and 53rd Intersection: Benzene, hexenes auto exhaust
17:04 Exhaust Spikes: benzene, toluene, xylenes
18:34 40th and York Intersection: benzene, toluene, xylenes auto exhaust
18:28 Clayton and 48th Intersection: benzene, toluene, hexenes auto exhaust
18:55 Vine and 48th Intersection: benzene, toluene, hexenes, Unknown

11-9-23 Western Hills Neighborhood

9:50 Bronco and Greenwood: hexene and alkene spike, unknown

11-9-23 Adams City Neighborhood

13:10-13:26 Circle K Station: Benzene, Toluene, Trimethylbenzenes and hexenes

CCND Neighborhood Monitoring Program 4th Quarter 2023 PTR Operational Parameters 11/5/2023 PTR Initial Calibration

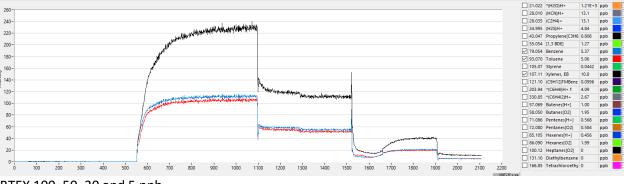
		<u>o</u> Ø
Setting	Odor	V 2
Primary Ion	H3O+	V 🍠
ransmission	DC	Image: A start of the start
	Man/Ctrl	Ctrl
PC	351.6 🌲	351.60 mbar
p Drift	2.30 📮	2.29 mbai
TofLens		6.78E-5 mbai
TOF		7.70E-7 mba
E/N		120 To
Temps	; 80.00 °C	79.90 °C
SrcValve	50.0 🌲	
H2O	6.0 🚔	6.00 sccm
02	0.0	0.00 sccm
NO		0.00 sccm
lho	4	4.0 m/
	On/Off	On
FCinlet	60.0	59.99 sccm
U FU	°C D+	D*
Us	150 🚍	145.0 V
Uso	80 🚍	78.6 V
Udrift	525	526.1 V
() H	anad and a	×
() Н	anad and a	×
Hex1	2	ОР
Hex1 OFF/ON		
Hex1		OP ON
Hex1 OFF/ON	₩ N ☑ sy 6.00 😫	OP ON 6.00Mhz
Hex1 OFF/ON Frequence	₩ V Ø Sy 6.00 €	OP ON 6.00Mhz

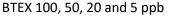
Production Settings

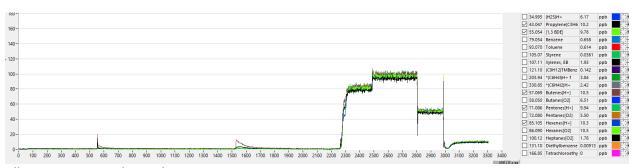
PS 4-6-2	23 MCP Tu	ine.iTPS	*	Changed*	
🖻 📴 🗠			MCP	1	
Lens 1	14.0 韋	14.0 V		All on 🗹	
Lens 2	30.0 韋	30.0 V		Lenses 🖂	
Lens 3	20.0 韋	21.0 V			
Lens 4	60.0 🖨	60.0 V			
Lens 5	70.0 韋	70.0 V			
Lens 6	80.0 🖨	80.0 V			
Lens 7	17.0 🖨	18.0 V			
Push L	16.5 韋	16.0 V	\square	3 mA	
Push H	790.0 韋	790.0 V	\square	2 mA	
Pull L	80.0 🖨	80.0 V	\square	3 mA	
Pull H	680.0 🖨	680.0 V	\square	3 mA	
Grid	2400.0 😫	2283.0 V	\square	1 µА	
Cage	5020.0 🖨	4766 V	\square	99 µA	
Refl. Grid	667.0 🖨	634.0 V	\square	75 µA	
Refl. Back	900.0 🖨	855.0 V	\square	167 µA	
MCP F	5400 韋	5134 V		17 µA	
MCP B	2496 韋	2397 V		214 µA	

TOF Voltages

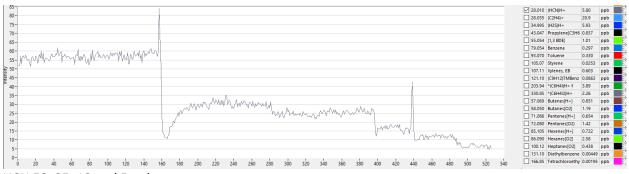
		Mass	Value	Unit	
	(CH2O)H+	31.01780	2.99	ppb	^
	*(02)+ [02+]	31.98930	2.19E+	3 ppb	1
	*(O2)+	32.99710	10.90	ppb	
	(CH4O)H+	33.03400	7.10	ppb	
	*(O2)+ i_18O	33.99350	4.99E+	3 ppb	
	(CH4O)H+ i_13C	34.03740	3.77	ppb	
1	(H2S)H+	34.99550	8.73	ppb	
	*(H2O)2H+	37.02840	281.40	ppb	
	*b38.low	37.93300	401.32	ppb	
	*(H2O)2H+	38.03260	513.61	ppb	
	[HCI]H+	37.41000	3.71	ppb	v
n T	-5-23 Suncor Wo strume R-Instrument Description	rking Peak	Table.ip Value		~
n T	strume R-Instrument Description	rking Peak		Unit	~ ~
n T	strume R-Instrument	rking Peak	Value	Unit V	~
n	strume R-Instrument Description Us_Set	rking Peak	Value 150.000	Unit V V	~
n	strume R-Instrument Description Us_Set Us_Act	rking Peak	Value 150.000 145.042	Unit V V V	~
n T	strume R-Instrument Description Us_Set Us_Act Uso_Set	rking Peak	Value 150.000 145.042 80.000	Unit V V V V	~ ~ ~
	strume R-Instrument Description Us_Set Us_Act Uso_Set Uso_Act Udrift_Set Iculated		Value 150.000 145.042 80.000 78.557 525.000	Unit V V V V Unit	~ ~
	strume R-Instrument Description Us_Set Us_Act Uso_Set Uso_Act Udrift_Set		Value 150.000 145.042 80.000 78.557 525.000	Unit V V V V Unit	· · · · · · · · · · · · · · · · · · ·
	strume R-Instrument Description Us_Set Us_Act Uso_Set Uso_Act Udrift_Set Iculated Trace NO+ O2+		Value 150.000 145.042 80.000 78.557 525.000	Unit V V V V Unit %	~
	strume R-Instrument Description Us_Set Us_Act Uso_Set Uso_Act Udrift_Set Iculated Trace NO+	Va	Value 150.000 145.042 80.000 78.557 525.000 lue 0.3442 3.848	Unit V V V V Unit % %	· · · · · · · · · · · · · · · · · · ·

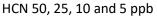

Peaks and Traces

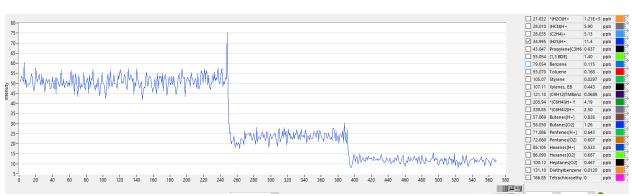



Acquisition				ACQ a	-	
	V.			nula	Luve	
Single Spec		1000	*			
	n time (µs)			372.3	amu	
	httime(µs)			31.25	kHz	
Data Save S			19591			
Spec	CONCRETE CONCRETE OF	Trace		Ray	/	
Time Durat	ion			~		
02:00:00	Single Fil	e Durat	ion			
24 🗘	Number	of Files	To Store	e		
C:\lonicon	data			1		
Add File	Count Ext Q for new					
<year>_<n< td=""><td></td><td></td><td></td><td>87</td><td></td></n<></year>				87		
Data_ <hou< td=""><td>r>_<minu< td=""><td>te>_<s< td=""><td>econd></td><td></td><td></td></s<></td></minu<></td></hou<>	r>_ <minu< td=""><td>te>_<s< td=""><td>econd></td><td></td><td></td></s<></td></minu<>	te>_ <s< td=""><td>econd></td><td></td><td></td></s<>	econd>			
2023_11_02	\Data_12_1	10_06_p	art_XXX	5		
Mass Axis C	alibration					
	Cal) sec	-	
Mass	TimeBir	i .		-		
21.0220	43360	1		a 150	18.3	
203.9430	188972	1	î l	b -255	02.2	
59.0491	89901	89901		~		
(M) +	ł —	Ē	>	<		
to F						
Hex1			OP			
OFF			ON			
Frequ	ency 6.00	-	6.00MH	ız		
Ampli	itude 95.0	-	56.1V			
Offset	- 0.70		-0.67V	8		
<				>		

Acquisition Parameters







Alkenes 100, 50 and 10 ppb

H2S 50, 20 and 10 ppb

Alkanes 250, 100 and 25 ppb

11-7-23 PTR Screenshots Pioneer Park

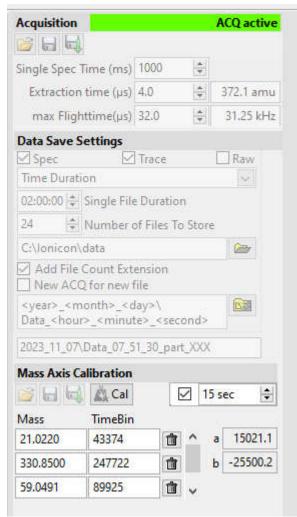
• 🖉	0			i i i i i i i i i i i i i i i i i i i			
~ 🎺			Odor	Setting			
~ 🤌			H3O+	Primary Ion			
~ 🍠			DC	Transmission			
Ctrl	C	rl	Man/Ct				
50 mbar	354.50		354.5	PC			
31 mbai	2.3		2.30	p Drift			
8.87E-5 mbar				TofLens			
-7 mbai	7.30E-			TOF			
120 To	ė			E/N			
79.90 °C	7	°C	80.40	Temps			
		+	50.0	SrcValve			
00 sccm	6.00		6.0	H2O			
00 sccm	0.00		0.0	02			
)0 sccm	0.00		0.0	NO			
4.0 mA			4	lhc			
On	On		On/Off				
03 sccm	60.0	60.0		FCinlet			
	D+		°C D	U FU			
45.0 V	14	1	150	Us			
78.6 V	7	1	80 🖨	Uso			
26.1 V	52	Party and	525	Udrift			

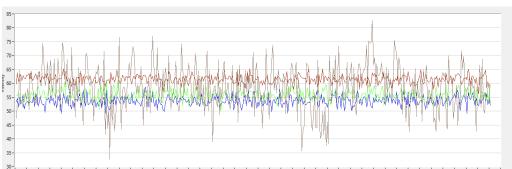
Production Settings

TPS			*	'Changed*
💕 ┢ 🗖			MC	2
Lens 1	14.0 韋	15.0 V		All on 🗹
Lens 2	30.0 韋	30.0 V		Lenses 🔽
Lens 3	20.0 韋	21.0 V		
Lens 4	60.0 韋	60.0 V		
Lens 5	70.0 韋	70.0 V		
Lens 6	80.0 韋	80.0 V		
Lens 7	17.0 🖨	18.0 V		
Push L	16.5 韋	16.0 V		3 mA
Push H	790.0 韋	790.0 V	\square	2 mA
Pull L	80.0 韋	80.0 V	\square	3 mA
Pull H	680.0 韋	680.0 V	\square	3 mA
Grid	2400.0 🖨	2282.0 V	\square	1 µA
Cage	5020.0 韋	4766 V	\square	99 µA
Refl. Grid	667.0 ≑	634.0 V	\square	75 µA
Refl. Back	900.0 韋	855.0 V	\square	167 µA
MCP F	5400 韋	5134 V	\square	17 µA
MCP B	2496 🖨	2394 V		215 µA

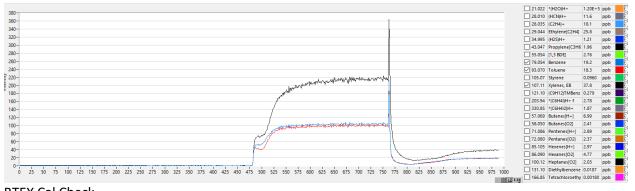
TOF Voltages

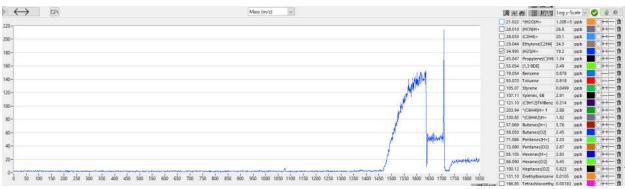
🛞 н.		<u>19</u> 3		×
R		ł		
Hex1				OP
OFF/	ON	\sim		ON
Freque	ncy	6.00		6.00Mh
Amplit	ude	95.0	4	56.1V
Offset	-	0.70	-	-0.67V


Hexapole Settings

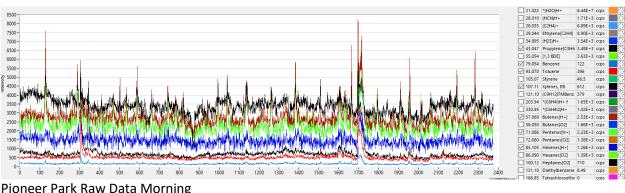

	i 🚣 🛄				
		Mass	Value	Unit	
	*(H2O)+	18.01000	61.11	ppb	^
	*(H3N)H+	18.03380	294.80	ppb	
	*(H2O)H+	19.01780	16.87	ppb	
1	*(H2O)H+	21.02210	1.19E+	5 ppb	
	[HCN]+	27.02000	1.55	ppb	
	*(N2)+	28.00600	0.00	ppb	
ſ	(HCN)H+	28.01000	24.46	ppb	
ſ	(C2H4)+	28.03508	16.00	ppb	
	*(N2)H+	29.01340	551.15	ppb	
	Ethylene[C2H4]	29.04400	3.76	ppb	
	*(NO)+ [NO+]	29.99740	164.90	ppb	~
2	-5-23 Suncor Wo strume IFSupply Description	orking Peak	Table.ip Value	ta" Unit	~
1	strume IFSupply	orking Peak		Unit	~ ~
0	strume IFSupply Description	orking Peak	Value	Unit V	~ ^
0	strume IFSupply Description TPS_Lens1_Act	orking Peak	Value 15.000	Unit V V	~ ~
1	strume FSupply Description TPS_Lens1_Act TPS_Lens2_Act	orking Peak	Value 15.000 30.000	Unit V V V	~
	strume IFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act	orking Peak	Value 15.000 30.000 21.000	Unit V V V V	~ ~
14 0 0	strume FSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens4_Act		Value 15.000 30.000 21.000 60.000 70.000	Unit V V V V V	× ×
14 0 0	strume FSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens5_Act Iculated Iculated Trace NO+		Value 15.000 21.000 60.000 70.000	Unit V V V V Unit	< >
14 0 0	strume IFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens5_Act Iculated Iculated Trace		Value 15.000 30.000 21.000 60.000 70.000	Unit V V V V Unit	
14 0 0	strume IFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens5_Act ICUlated ICUlated ICUlated ICULATED ICULA		Value 15.000 21.000 60.000 70.000	Unit V V V V V Unit %	~
14 0 0	strume FSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens5_Act Iculated Iculated NO+ O2+	Va	Value 15.000 21.000 60.000 70.000 lue 0.2998 0.04252	Unit V V V V Unit % %	× ×

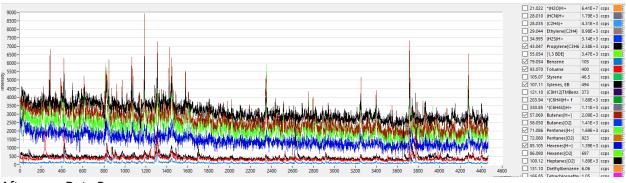
Peaks and Traces


Acquisition Settings

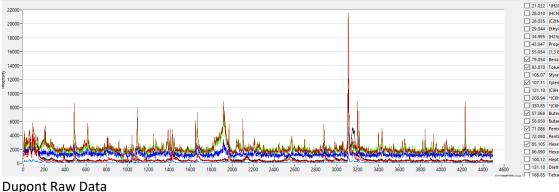

21.022	*(H2O)H+	1.19E+5	ppb	
28.010	(HCN)H+	10.6	ppb	
28.035	(C2H4)+	10.5	ppb	
29.044	Ethylene[C2H4]	52.8	ppb	
34.995	(H2S)H+	2.74	ppb	
43.047	Propylene[C3H6	53.9	ppb	
55.054	[1,3 BDE]	51.8	ppb	- E
79.054	Benzene	0.108	ppb	
93.070	Toluene	0.216	ppb	
105.07	Styrene	0.0578	ppb	- E
107.11	Xylenes, EB	0.503	ppb	1 C
121.10	(C9H12)TMBenz	0.315	ppb	
203.94	*(C6H4I)H+ f	2.71	ppb	
330.85	*(C6H4I2)H+	1.83	ppb	
57.069	Butenes[H+]	59.7	ppb	
58.050	Butanes[O2]	22.1	ppb	
71.086	Pentenes[H+]	59.2	ppb	
72.080	Pentanes[O2]	18.0	ppb	
85.105	Hexenes[H+]	52.3	ppb	
86.090	Hexanes[O2]	40.1	ppb	
100.12	Heptanes[O2]	2.40	ppb	
	28.010 28.035 29.044 34.995 43.047 75.054 93.070 105.07 107.11 221.10 203.94 330.85 58.050 71.086 72.080 85.105 86.090	28000 [HC3]H4 28.035 [C2H4]+ 28.035 [C2H4]+ 28.036 [HC3]H4 28.037 [Poptenc[2H4] 28.047 [Poptenc[2H4] 28.047 [Poptenc] 29.057 [Styrene 19.057 [Styrene 19.057 [Styrene 19.057 [Styrene 19.057 [Styrene 19.058] [C6H42]H4 28.058 [C6H	28.010 (HCRH+) 10.6 28.035 (C2H4)- 10.5 28.044 (Hyten(C2H4) 52.6 28.495 (H25)H+ 2.74 34.905 (H25)H+ 2.74 34.047 Proprimer(C3H6) 53.8 70.054 Benzene 0.106 95.075 Toluene 0.216 105.07 Styrene 0.657.8 11.10 (G2H12)TMBERC 0.315 30.84 "(G4H4H)H+ 1.31 50.098 Butenes(C2) 2.21 70.609 Butanes(C2) 18.0 83.10 Hexenes(H-1) 52.3 60.000 Hexanes(C2) 2.3	28.010 HCKIH+ 10.6 ppb 28.035 CZH49- 10.5 ppb 28.044 [Hythen(22H4] 52.4 ppb 24.955 HCS1H+ 52.4 ppb 34.957 HCS1H+ 53.4 ppb 55.054 1.18 BOE] 51.34 ppb 95.050 Fortere 0.106 ppb 95.057 Styrene 0.632 ppb 95.057 Styrene 0.535 ppb 95.058 !CGH12/HMEerc 0.515 ppb 95.059 #CHCH2H+ 1.83 ppb 95.050 Butanets(D2] 2.1<

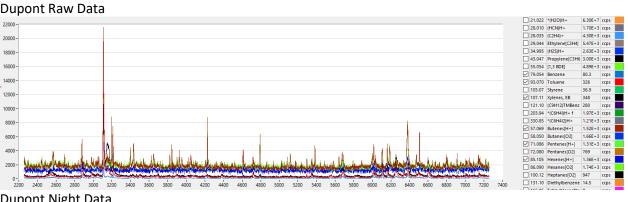
³⁰ to 20 sho 40 sho elo 70 elo sho to 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420





H2S Cal Check

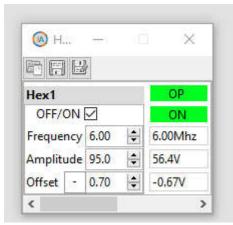

Pioneer Park Raw Data Morning


Afternoon Data Raw

11-7-23 **Dupont Night Testing**

Dupont Night Data

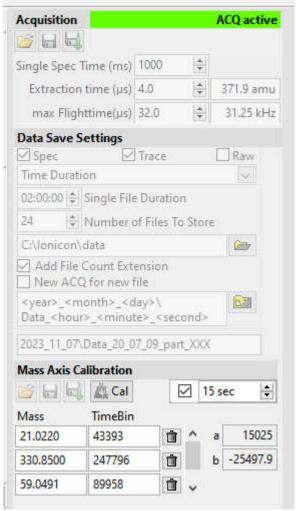
11-8-23 Globeville and E-Swansea PTR Screenshots

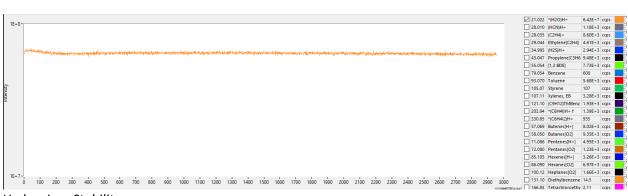

à				6) 0		
	Setting	Odor		1	~ 🍠		
Prin	mary lon	H3O+	8		~ 🥜		
[ran:	mission	DC			~ 🥖		
		Man/	Ctrl	C	trl		
	PC	355	.5 🌲	355.50) mbar		
	p Drift	2.3	30 🌲	2.2	9 mbar		
TofLens TOF E/N		8	8.66E-5 mbar				
			6.84E-7 mbar				
			120 To				
	Temps	79.9	79.90 °C		9.90 °C		
5	SrcValve	50	50.0 🚍				
	H2O	6	6.0		6.00 sccm		
	02	0	0.0) sccm		
	NO	0	0.0		0.00 sccm		
	lhc		4	4.0 m			
		On/	Off	0	On		
	FCinlet	60	.0	60.0	1 sccm		
U	FU	°C	C>	D*			
	Us	150	A	14	5.0 V		
	Uso	80		7	8.6 V		
	Udrift	525		52	6.1 V		

Production Settings

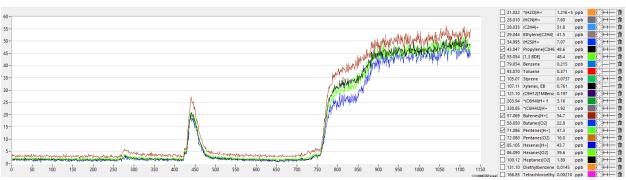
PS	Tun	МСР	5-23	PS 4-0
		H	H	3 🝺
5.0 V	-	14.0	1	Lens
0.0 V	*	30.0	2	Lens
1.0 V	\$	20.0	3	Lens
0.0 V	\$	60.0	4	Lens
0.0 V	*	70.0	5	Lens
0.0 V	÷	80.0	6	Lens
8. <mark>0</mark> V	*	17.0	7	Lens
6.0 V	\$	16.5	L	Push
0.0 V	*	790.0	н	Push
0.0 V	+	80.0	L	Pull
0.0 V	\$	680.0	н	Pull
3.0 V	-	400.0	id 2	Gr
766 V	-	020.0	ge 5	Cag
4.0 V	-	667.0	id	lefl. Gr
5.0 V	\$	900.0	ck	efl. Ba
134 V	*	5400	F	MCP
392 V	\$	2496	в	MCP

TOF Lenses

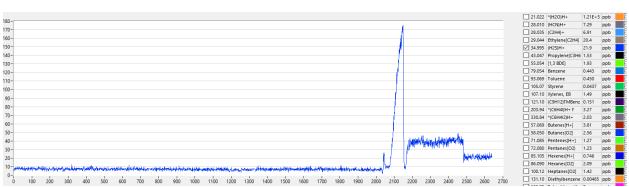

Hexapole Settings


		Mass	Value	Unit	
	*(O2)+ i_18O	33,99350	2.09E+	6 ccps	~
	(CH4O)H+ i_13C	34.03740	929.61	ccps	
1	(H2S)H+	34.99550	3.95E+	3 ccps	
	*(H2O)2H+	37.02840	5.25E+	5 ccps	
	*b38.low	37.93300	6.08E+	5 ccps	
	*(H2O)2H+	38.03260	1.07E+	6 ccps	
	[HCI]H+	37.41000	7.42E+	3 ccps	
	*b38.high	38.13300	4.80E+	5 ccps	
	*(H2O)2H+	39.03270	1.12E+	6 ccps	
	(C3H4)H+	41.03860	3.47E+	3 ccps	
	(C2H3N)H+	42.03380	465.59	ccps	v
	strume DFSupply Description		Value	Unit	~
)FSupply Description		Value	Unit	~
	DFSupply Description TPS_Lens1_Act		15.000	V	~
	DFSupply Description TPS_Lens1_Act TPS_Lens2_Act		15.000 30.000	v v	~
	DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act		15.000	v v v	~
	DFSupply Description TPS_Lens1_Act TPS_Lens2_Act		15.000 30.000 21.000	V V V V	×
TC	DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens4_Act TPS_Lens5_Act		15.000 30.000 21.000 60.000 70.000	V V V V V	
TC	DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens4_Act TPS_Lens5_Act	Va	15.000 30.000 21.000 60.000 70.000	V V V V	~
TC	DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens4_Act TPS_Lens5_Act ICULATED ICULATED Trace NO+	Va	15.000 30.000 21.000 60.000 70.000	V V V V V Unit	<
TC	DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens5_Act TPS_Lens5_Act ICULATED Trace NO+ O2+	Va	15.000 30.000 21.000 60.000 70.000 lue 1.117 3.196	V V V V Unit %	
TC	DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens4_Act TPS_Lens5_Act IPS_Lens5_Act ICULATED ICULAT		15.000 30.000 21.000 60.000 70.000 lue 1.117 3.196 1.707	V V V V V Unit % %	
TC	DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens5_Act TPS_Lens5_Act ICULATED Trace NO+ O2+		15.000 30.000 21.000 60.000 70.000 lue 1.117 3.196	V V V V V Unit % % % ncps	

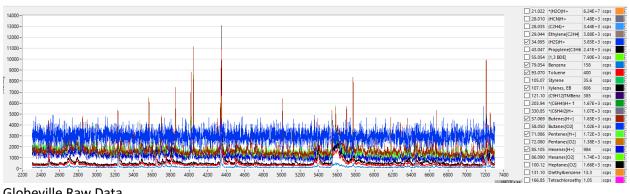
Peaks and Traces

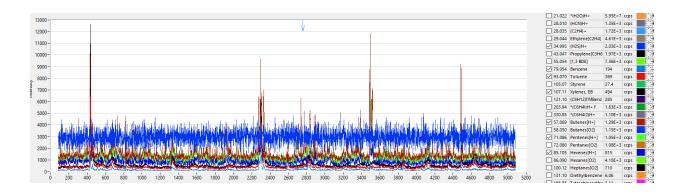


Acquisition Settings



Hydronium Stability

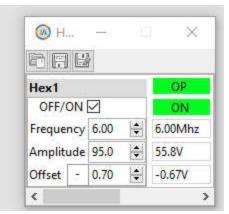




H2S Cal Check

Globeville Raw Data

E-Swansea Night Testing Raw Data 11-9-23 Western Hills PTR Screenshots

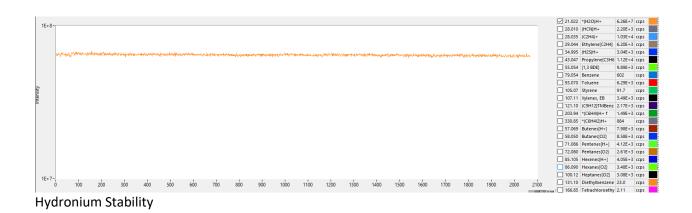

	4				<u>o</u> Ø
Setting Primary Ion Transmission		Odor			~ 1
		H3O+			~ 🍠
		DC			~ 🍠
			Ctrl	1	Ctrl
PC		353.	9	353.9	92 mbar
p Dr	2.3	0	2.	30 mbar	
TofLe			8.50E	-5 mbar	
TOF				7.20E	-7 mbar
E/	N				120 To
Tem	ps	80.0	80.00 °C 80.0		80.00 °C
SrcVal	ve	50.	0	}	
H2	0	6.	0	6.0	00 sccm
C	02	0.	0	0.0	00 sccm
N	0	0.	0	0.0	00 sccm
1	hc		4	3	4.0 mA
		On/C	On/Off		
FCin	let	60	.0	60.	03 sccm
U FU		°C	C>	D+	
Us		150		1	45.0 V
Uso	e	80		1	78.6 V
Udrift		525		5	26.1 V

Production Settings

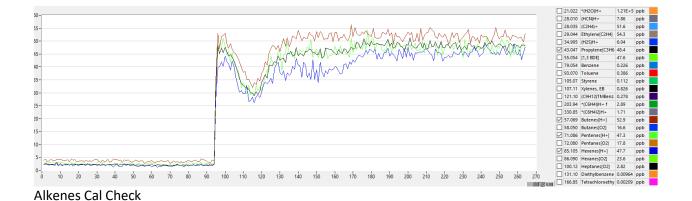
PS 4-6-2		Tur	ne.iTPS	1000	Changed*
3 🝺 🖬				MC	1
Lens 1	14.0	\$	15.0 V		All on 🗹
Lens 2	30.0	-	30.0 V		Lenses 🔽
Lens 3	20.0	*	21.0 V		
Lens 4	60.0	-	60.0 V		
Lens 5	70.0	-	70.0 V		
Lens 6	80.0	-	80.0 V		
Lens 7	17.0	÷	18.0 V		
Push L	16.5	ŧ	16.0 V	\square	3 mA
Push H	790.0	-	790.0 V	\square	3 mA
Pull L	80.0	*	V 0.08	\square	3 mA
Pull H	680.0	-	680.0 V	\square	3 mA
Grid	2400.0	\$	2282.0 V	\square	1 µA
Cage	5020.0	\$	4768 V	\square	99 µA
Refl. Grid	667.0		634.0 V	\square	75 µA
efl. Back	900.0	-	855.0 V	\square	167 µA
MCP F	5400	-	5134 V		17 µA
MCP B	2496	+	2393 V		216 µA

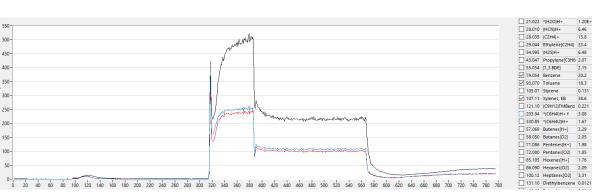
TOF Lenses

Hexapole Settings

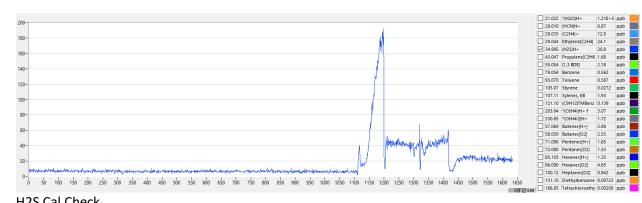

		Mass	Value	Unit	
	*(02)+ i_180	33.99350	4.39E+	3 ppb	~
	(CH4O)H+ i_13C	34.03740	1.63	ppb	
1	(H2S)H+	34.99550	8.40	ppb	8
	*(H2O)2H+	37.02840	299.01	ppb	
	*b38.low	37.93300	350.66	ppb	
	*(H2O)2H+	38.03260	626.31	ppb	
	[HCI]H+	37.41000	3.75	ppb	
	*b38.high	38.13300	357.35	ppb	
	*(H2O)2H+	39.03270	2.68E+	3 ppb	
	(C3H4)H+	41.03860	10.30	ppb	
	(C2H3N)H+	42.03380	0.95	ppb	v
In	-5-23 Suncor Wo strume)FSupply Description	rking Peak	: Table.ip Value	ota" Uni	∽ t
In	strume)FSupply Description	rking Peak		Uni	v t
In	strume)FSupply	rking Peak	Value	Uni V	t t
In	strume DFSupply Description TPS_Lens1_Act	rking Peak	Value 14.000	Uni V V	v t
In	strume DFSupply Description TPS_Lens1_Act TPS_Lens2_Act	rking Peak	Value 14.000 30.000	Uni V V V	t A
In	strume DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act	rking Peak	Value 14.000 30.000 21.000	Uni V V V	
In TC	strume DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens4_Act TPS_Lens5_Act		Value 14,000 30.000 21.000 60.000 69.000	Uni V V V V V	t v
In	strume DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens4_Act TPS_Lens5_Act ICUlated		Value 14.000 30.000 21.000 60.000 69.000	Uni V V V V Unit	t ^
In	strume DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens4_Act TPS_Lens5_Act Iculated		Value 14.000 21.000 60.000 69.000	Uni V V V V Unit	• t • •
In	strume DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens5_Act TPS_Lens5_Act Iculated Trace NO+ O2+		Value 14.000 30.000 21.000 60.000 69.000	Uni V V V V Unit %	t ^
In	strume DFSupply Description TPS_Lens1_Act TPS_Lens2_Act TPS_Lens3_Act TPS_Lens4_Act TPS_Lens5_Act Iculated	Va	Value 14,000 30,000 21,000 60,000 69,000 69,000	Uni V V V V Unit % %	

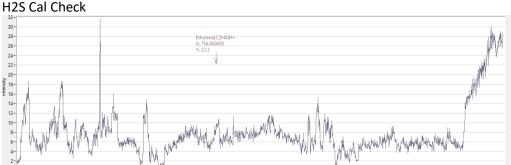
Peaks and Traces

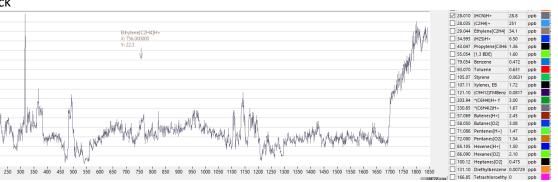



Acquisition	e. I			A	CQ ac	tive
💕 🖬 🗟	1					
Single Spec	Time (ms)	1000	*			
Extraction	n time (µs)	4.0	*		372.1	amu
max Flig	httime(µs)	32,0	*		31.25	kHz
Data Save	Settings					
Spec 🗹	2	Trace			Raw	
Time Durat	tion				V	
02:00:00 \$	Single File	e Duratio	n :			
24 🗳	Number	of Files To	o Sto	re		
C:\lonicon	\data				6	
Add File	Count Ext Q for new					
<year>_<n Data_<hou< td=""><td></td><td></td><td>ond></td><td></td><td>82</td><td></td></hou<></n </year>			ond>		82	
2023_11_07	\Data_20_0)7_09_par	t_XX	¢		
Mass Axis (alibration					
	Cal	[2	5 se	ec	-
Mass	TimeBin			112		
21.0220	43375	Ċ	^	а	150	20.5
20202200	247714	Ċ	Ě	b	-254	97.1
330.8500						

Acquisition Parameters





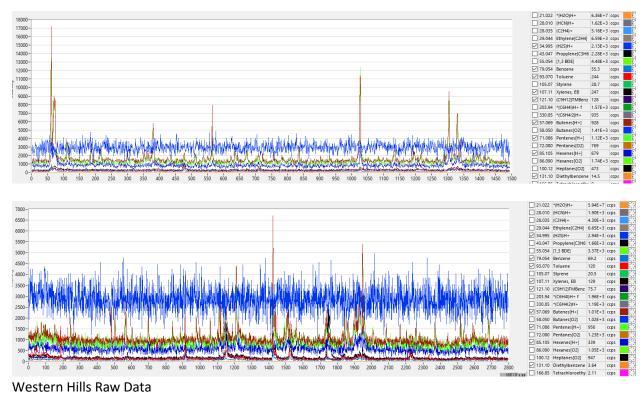


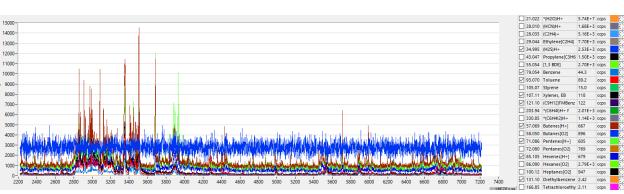
BTEX Cal Check

1.20E+5 ppb

 ppb
 2

 ppb


ppb


HCN Cal Check

200

0-

Adams City Raw Data

PTR Daily Calibration Checks

			Initial Instrument Calibrati			
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
		our component	(199-1)	(pps 1)	(see . canae)	
11/5/2023	10:22	Benzene	100	110	10.0	Pass
		Toluene	100	108	8.0	Pass
		Xylenes	200	220	10.0	Pass
	10:28	Benzene	50	52.9	5.8	Pass
		Toluene	50	50.6	1.2	Pass
		Xylenes	100	110	10.0	Pass
	10:35	Benzene	20	20.7	3.5	Pass
		Toluene Xylenes	20 40	20.8 40.1	4.0 0.3	Pass Pass
		xytenes	40	40.1	0.3	Pass
	10:39	Benzene	5	5.21	4.2	Pass
	10.33	Toluene	5	5.06	1.2	Pass
		Xylenes	10	10.4	4.0	Pass
	10:50	Ethylene	100	99.6	-0.4	Pass
		Propylene	100	98.3	-1.7	Pass
		1-Butene	100	97.2	-2.8	Pass
		1-Pentene	100	97.8	-2.2	Pass
		1-Hexene	100	98.7	-1.3	Pass
		1,3-Butadiene	100	102	2.0	Pass
	10:52	Ethylene	50	49.7	-0.6	Pass
		Propylene	50	50.1	0.2	Pass
		1-Butene 1-Pentene	50 50	52.4 49.9	4.8	Pass
		1-Pentene 1-Hexene	50	49.9	-0.2	Pass
		1,3-Butadiene	50	49.9	-0.2	Pass
		1,3-Dutatiene	50	43.5	-0.2	F 433
	10:58	Ethylene	10	11.8	18.0	Pass
		Propylene	10	9.87	-1.3	Pass
		1-Butene	10	10.9	9.0	Pass
		1-Pentene	10	10.4	4.0	Pass
		1-Hexene	10	10.2	2.0	Pass
		1,3-Butadiene	10	10.6	6	Pass
	11:06	HCN	50	54.6	9.2	Pass
	11:10 11:12	HCN HCN	25	25.6 10.8	2.4 8.0	Pass Pass
	11:12 11:14	HCN	10	10.8	8.0	Pass Pass
	11.14	ALN	3	3.0	42.0	1433
	11:35	H ₂ S	50	50.8	1.6	Pass
	11:35	H ₃ S H ₃ S	20	20.2	1.6	Pass
	11:37	H ₃ S H ₃ S	10	10.3	3.0	Pass
				10.2		
	12:03	Butane	250	249	-0.4	Pass
	11.00	Pentane	250	243	-2.8	Pass
		Hexane	250	238	-4.8	Pass
		Heptane	250	236	-5.6	Pass
	12:06	Butane	100	97.6	-2.4	Pass
		Pentane	100	92.7	-7.3	Pass
		Hexane	100	94.8	-5.2	Pass
		Heptane	100	98.9	-1.1	Pass
	12:09	Butane	25 25	25.6	2.4	Pass
		Pentane Hexane	25	24.3 23.1	-2.8 -7.6	Pass Pass
		Heptane	25	23.1 24.5	-7.6	Pass
		neptane	13	24.3	-2.0	Pidaa

			Instrument Calibration	Check		
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
11/7/2023	9:01	Ethylene	50	54.1	8.2	Pass
ioneer Park		Propylene	50	53.6	7.2	Pass
Dupont		1-Butene	50	52.4	4.8	Pass
		1-Pentene	50	55.6	11.2	Pass
		1-Hexene	50	51.7	3.4	Pass
		1,3-Butadiene	50	53.4	6.8	Pass
	9:08	Benzene	100	103	3.0	Pass
		Toluene	100	102	2.0	Pass
		Xylenes	200	214	7.0	Pass
	9:11	Benzene	20	19.3	-3.5	Pass
		Toluene	20	18.6	-7.0	Pass
		Xylenes	40	39	-2.5	Pass
	9:17	HCN	25	25.5	2.0	Pass
	9:24	H ₂ S	50	50.3	0.6	Pass
	9:26	H ₂ S	20	21.3	6.5	Pass
	9:30	Butane	150	161	7.3	Pass
	9:30	Pentane	150	154	2.7	Pass
		Hexane	150	148	-1.3	Pass
		Heptane	150	148	-2.0	Pass
	7:48	HCN	25	23.8	-4.8	Pass
	7:46	H ₂ S	20	19.9	-0.5	Pass
	7:30	Butane	150	158	5.3	Pass
	1.20	Pentane	150	155	3.3	Pass
		Hexane	150	143	-4.7	Pass
		Heptane	150	145	-4.0	Pass
	7:38	Benzene	20	18.8	-6.0	Pass
		Toluene	20	17.9	-10.5	Pass
		Xylenes	40	38.2	-4.5	Pass
	7:28	Ethylene	50	46.9	-6.2	Pass
		Propylene	50	51.9	3.8	Pass
		1-Butene	50	55.4	10.8	Pass
		1-Pentene	50	52.6	5.2	Pass
		1-Hexene	50	51.2	2.4	Pass

			Instrument Calibration	Check		
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
11/8/2023	13:00	Ethylene	50	47.2	-5.6	Pass
Globeville		Propylene	50	51.3	2.6	Pass
E-Swansea		1-Butene	50	50.9	1.8	Pass
		1-Pentene	50	48.1	-3.8	Pass
		1-Hexene	50	46.5	-7.0	Pass
		1,3-Butadiene	50	50.4	0.8	Pass
	13:05	Benzene	100	104	4.0	Pass
		Toluene	100	98.6	-1.4	Pass
		Xylenes	200	189	-5.5	Pass
	13:12	Benzene	20	21.9	9.5	Pass
		Toluene	20	20.7	3.5	Pass
		Xylenes	40	41.6	4.0	Pass
	12:53	HCN	25	24.2	-3.2	Pass
	13:24	H ₂ S	50	48.4	-3.2	Pass
	13:26	H ₂ S	20	19.7	-1.5	Pass
		-				
	13:15	Butane	150	141	-6.0	Pass
		Pentane	150	146	-2.7	Pass
		Hexane	150	138	-8.0	Pass
		Heptane	150	141	-6.0	Pass
	19:33	HCN	25	23.3	-6.8	Pass
	19:30	H ₂ S	20	19.6	-2.0	Pass
	19:48	Butane	150	146	-2.7	Pass
		Pentane	150	139	-7.3	Pass
		Hexane	150	142	-5.3	Pass
		Heptane	150	141	-6.0	Pass
	19:40	Benzene	20	18.4	-8.0	Pass
		Toluene	20	19.5	-2.5	Pass
		Xylenes	40	38.4	-4.0	Pass
	19:44	Ethylene	50	48.6	-2.8	Pass
		Propylene	50	48.1	-3.8	Pass
		1-Butene	50	51.6	3.2	Pass
		1-Pentene	50	47	-6.0	Pass
		1-Hexene	50	48.3	-3.4	Pass
		1,3-Butadiene	50	47.7	-4.6	Pass

			Instrument Calibration C			
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fai
11/9/2023	8:24	Ethylene	50	51.5	3.0	Pass
Vestern Hills		Propylene	50	48.7	-2.6	Pass
Adams City		1-Butene	50	50.8	1.6	Pass
		1-Pentene	50	49.5	-1.0	Pass
		1-Hexene	50	46.6	-6.8	Pass
		1,3-Butadiene	50	47.9	-4.2	Pass
	8:31	Benzene	100	106	6.0	Pass
		Toluene	100	98.9	-1.1	Pass
		Xylenes	200	212	6.0	Pass
	8:34	Benzene	20	19.9	-0.5	Pass
		Toluene	20	19.2	-4.0	Pass
		Xylenes	40	38.2	-4.5	Pass
	8:52	HCN	25	26	4.0	Pass
	8:45	H ₂ S	50	48.2	-3.6	Pass
	8:48		20	20.8	4.0	Pass
	8:39	Butane	150	145	-3.3	Pass
		Pentane	150	146	-2.7	Pass
		Hexane	150	144	-4.0	Pass
		Heptane	150	139	-7.3	Pass
	15:26	HCN	25	24.1	-3.6	Pass
	15:31	H ₂ S	20	19.8	-1.0	Pass
	15:47	Butane	150	144	-4.0	Pass
		Pentane	150	143	-4.7	Pass
		Hexane	150	150	0.0	Pass
		Heptane	150	135	-10.0	Pass
	15:44	Benzene	20	19.8	-1.0	Pass
		Toluene	20	18.7	-6.5	Pass
		Xylenes	40	35.4	-11.5	Pass
	15:35	Ethylene	50	54.6	9.2	Pass
		Propylene	50	48.6	-2.8	Pass
		1-Butene	50	50.6	1.2	Pass
		1-Pentene	50	47.9	-4.2	Pass
		1-Hexene	50	48.5	-3.0	Pass
		1,3-Butadiene	50	47.9	-4.2	Pass

APPENDIX E CALIBRATION GAS CERTIFICATION SHEETS

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED STANDARD-SPEC

Customer: MC Part Number: X00 Cylinder Number: CC Laboratory: 124 Analysis Date: De Lot Number: 126

MONTROSE AIR QUALITY SERVICES LLC X02NI99C15W0061 CC519990 124 - La Porte Mix - TX Dec 14, 2021 126-402278540-1 Expiration Date: Dec 14, 2024

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: 126-402278540-1 144.3 CF 2015 PSIG 330

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS					
Component	Req Conc	Actual Concentration (Mole %)	Analytical Uncertainty		
HYDROGEN SULFIDE NITROGEN	1.000 PPM Balance	1.084 PPM	+/-5%		

Notes: MONTROSE AIR QUALITY SERVICES LLC PO3: PO018078

Signature on file Approved for Release

Page 1 of 1

Airgas Specialty Gases Airgas USA, LLC 616 Miller Cut Off Road La Porte, TX 77571 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: CERTIFIED STANDARD-SPEC

	Expiration Date: Jul 30, 2024		
Date: Lot Number	126-402159020-1		
Number: Laboratory: Analysis	124 - La Porte Mix - TX Jul 30, 2021	Cylinder Pressure: Valve Outlet:	2015 PSIG 350
Number: Cylinder	CC344804	Cylinder Volume:	144.3 CF
Customer: Part	*CRYSTAL LAKE, IL* MONTROSE AIR QUALITY SERVICE X06NI99C15A00A3	Reference Number:	126-402159020-1

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

Component	Req Conc	Actual Concentration	Analytical	
		(Mole %)	Uncertainty	
HEXANE	1.000 PPM	0.9950 PPM	+/- 5%	
N BUTANE	1.000 PPM	1.002 PPM	+/- 5%	
N HEPTANE	1.000 PPM	1.000 PPM	+/- 5%	
N PENTANE	1.000 PPM	1.000 PPM	+/- 5%	
PROPANE	1.000 PPM	1.009 PPM	+/- 5%	
NITROGEN	Balance			

Notes:.

PO#PO-011307

Approved for Release

Page 1 of 126-402159020-1

Airgas Specialty Gases Airgas USA LLC 6141 Easton Road Plumsteadville, PA 18949 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED STANDARD-SPEC

Part Number:	X02NI99C15A0A19	Reference Number:	SG02-IC000027612-1
Cylinder Number:	CC524330	Cylinder Volume:	142.0 CF
Laboratory:	124 - Plumsteadville - PA	Cylinder Pressure:	2015 PSIG
Analysis Date:	Aug 10, 2023	Valve Outlet:	350SS
Lot Number:	SG02-IC000027612-1		

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS Component Req Conc Actual Concentration (Mole %) Analytical Uncertainty HYDROGEN CYANIDE 1.000 PPM 0.9980 PPM +/-5% NITROGEN Balance +/-5%

Notes:Analysis Date 8/7/2023 Expiration Date 8/7/2024 Bland Tolerance +/-20% Analytical Tolerance +/-5%

Approved for Release

Page 1 of 1

Airgas Specialty Gases Airgas USA LLC 616 Miller Cut Off Road La Porte, TX 77571 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED STANDARD-SPEC

Customer: MONTROSE AIR QUALITY SERVICES LLC - HENDERSON

	Part	, CO X07NI99C15A00A9		Reference Number:	126-402805383-1A
-	Number: Cylinder Number:	EB0157463		Cylinder Volume:	144.0 CF
	Laboratory:	124 - La Porte Mix - TX Aug 25, 2023	a para series de la companya e como a companya manegar para para de como como com	Cylinder Pressure: Valve Outlet:	2015 PSIG 350
	Date: Lot Number:	126-402805383-1A			

Expiration Date: Aug 25, 2024

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS

Component	Req Conc	Actual Concentration	Analytical		
		(Mole %)	Uncertainty		
1 BUTENE	1.000 PPM	1.104 PPM	+/- 10%		
1 HEXENE	1.000 PPM	1.123 PPM	+/- 10%		
1 PENTENE	1.000 PPM	1.119 PPM	+/- 10%		
1,3 BUTADIENE	1.000 PPM	1.000 PPM	+/- 10%		
ETHYLENE	1.000 PPM	1.172 PPM	+/- 10%		
PROPYLENE	1.000 PPM	1.153 PPM	+/- 10%		
NITROGEN	Balance				

Notes: MONTROSE AIR QUALITY SERVICES LLC PO#: PO-049252

Approved for Release

Page 1 of 1

THIS IS THE LAST PAGE OF THIS DOCUMENT

